| 研究生: |
何承彬 Cheng-Bin He |
|---|---|
| 論文名稱: |
結合鈣鈦礦型觸媒及非熱電漿技術去除氣流中三氯乙烯之可行性探討 Catalytic oxidation of trichloroethylene via combining non-thermal plasma and perovskite-type catalyst |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 揮發性有機物 、三氯乙烯 、非熱電漿技術 、Perovskite-type觸媒 、單階段電漿結合觸媒系統 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
揮發性有機污染物(VOCs) 對人體健康與環境造成不利的影響,短時間接觸VOCs使人感到不適,產生頭暈、噁心、嘔吐、流淚、刺鼻、咳嗽等症狀,暴露於濃度過高之VOCs時可能導致中毒死亡,長期接觸則導致肝、肺、呼吸道等疾病,而含氯的有機溶劑大部份已證實具有致癌性,其對人體健康及環境造成的影響不容忽視。
本研究分為兩個部份,第一部份為使用檸檬酸凝膠法製備perovskite-type觸媒LaMnO3,以Ce及Ni金屬進行觸媒改質,分別製備LaMnO3、La0.8Ce0.2MnO3及La0.8Ce0.2Mn0.8Ni0.2O3三種觸媒,除比較去除氣流中三氯乙烯之活性外,亦透過XRD、BET、SEM-EDS、XPS儀器分析觸媒之物化特性,藉由操作參數了解最佳之控制技術。研究結果顯示La0.8Ce0.2Mn0.8Ni0.2O3在400oC對三氯乙烯去除效率可達100%且在600oC對三氯乙烯之礦化率已達100%,而La0.8Ce0.2MnO3及LaMnO3則需於450oC及500oC才可達完全去除之效率。從觸媒測試結果顯示改質之La0.8Ce0.2Mn0.8Ni0.2O3對三氯乙烯之去除具有最佳活性,因此以此觸媒進行後續實驗。第二部份為在常溫下進一步利用perovskite-type觸媒結合非熱電漿系統以評估去除三氯乙烯之效能,結果顯示此系統對三氯乙烯之去除效率達100%;與單獨非熱電漿系統相比較,在去除三氯乙烯實驗中電漿催化系統的礦化率可提升至44%,且可大幅降低副產物(O3、NOx)的產生;能量效率方面,單階段電漿結合觸媒系統顯著高於非熱電漿系統。整體而言,本研究所研發之電漿結合觸媒系統是一種創新並且有效的VOCs控制技術,可協助工商業解決VOCs引發之空氣污染問題。
Volatile organic compounds (VOCs) have been widely used in industrial processes. Among them, trichloroethylene(TCE) is a solvent mainly used for metal degreasing and dry cleaning. However, it is toxic and probably causes cancer for humans. Perovskite-type catalysts such as LaMnO3 have been studied for VOC removal and they can be modified by partial substitution to enhance catalytic activity and mineralization rate. Also, non-thermal plasma (NTP) can effectively eliminate VOCs, because NTP can generate radicals to decompose and oxidize VOC molecules. However, NTP has several drawbacks such as low selectivity and O3 formation. In this study, removal of trichloroethylene (TCE) is investigated using a hybrid system which combines NTP and perovskite-type catalyst. The operating conditions are TCE = 150 ppm, applied voltage = 14 - 17 kV, frequency = 8 kHz, and gas flow rate = 500 mL/min. The removal efficiency of TCE achieved with the DBD plasma increases from 24% to 75% as applied voltage is increased from 14 to 17 kV, while mineralization rate is increased from 4% to 11%. For product analysis, phosgene (PG), dichloro acetyl chloride (DCAC), trichloroacetaldehyde (TCAD), O3, CO, and CO2 were mainly observed in the NTP process. As La0.8Ce0.2Mn0.8Ni0.2O3 is placed into the discharge zone to form the hybrid system, the removal efficiency of TCE achieved increases from 24% to 90% as the applied voltage is increased from 14 to 17 kV, while mineralization rate achieved with plasma catalysis reaches 41% at 17 kV. More importantly, the formation of the hazardous products such as O3, NOx, phosgene, and chlorine is significantly reduced as a perovskite-type catalyst is introduced. Overall, the preliminary results indicate that plasma catalysis can enhance the performance of catalyst for TCE removal.
Alami D., “Environmental applications of rare-Earth manganites as catalysts: a comparative study”, Environmental Engineering Research, 18:211-219 (2013).
Aerts R., Tu X., Van Gaens W., Whitehead J. C., Bogaerts A., “Gas purification by nonthermal plasma: a case study of ethylene”, Environmental Science & Technology, 47(12):6478-6485 (2013).
Bertinchamps F., Treinen M., Eloy P., Dos Santos A. M., Mestdagh M. M., Gaigneaux E. M., “Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs”, Applied Catalysis B: Environmental, 70:360-369 (2007).
Barbero B. P., Gamboa J. A., Cadús L. E., “Synthesis and characterization of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds”, Applied Catalysis B: Environmental, 65(1-2):21-30 (2006).
Blanch-Raga N., Palomares A. E., Martínez-Triguero J., Valencia S., “Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation”, Applied Catalysis B: Environmental, 187:90-97 (2016).
Chang J. S., Lawless P. A., Yamamoto, T., “Corona discharge processes”, Institute of Electrical and Electronics Engineers, 19: 1152-1166 (1991).
Corella J., Toledo J. M., Padilla A. M., “On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons”, Applied Catalysis B: Environmental, 27:243-256 (2000).
Connell M., Norman A. K., HuÈttermann C. F., Morris M. A., “Catalytic oxidation of lanthanum-transition metal perovskite materials”, Catalysis Today, 47:123-132 (1999).
Chen H. L., Lee H. M., Chen S. H., Chao Y., Chang M. B., “Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects”, Applied Catalysis B: Environmental, 85(1-2):1-9 (2008).
Chen S. X., Wang Y., Jia A. P., Liu H. H., Luo M. F., Lu J. Q., “Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts”, Applied Surface Science, 307:178-188 (2014).
Ding Y., Wang S., Zhang L., Chen Z., Wang M., Wang S., “A facile method to promote LaMnO3 perovskite catalyst for combustion of methane”, Catalysis Communications, 97:88-92 (2017).
Eliasson B., Kogelschatz U., “Modeling and applications of silent discharge plasmas”, IEEE Transactions on Plasma Science, 19(2):309-323 (1991).
Evans D., Rosocha L. A., Anderson G. K., Coogan J. J., Kushner M. J., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 74(9):5378-5386 (1993).
Everaert K., Baeyens J., “Catalytic combustion of volatile organic compounds”, Journal of Hazardous Materials B, 109:113-119 (2004).
Goldschmidt V. M., “Die gesetze der krystallochemie. Naturwissenschaften”, 14(21):477-485 (1926).
Guo Y. F., Ye D. Q., Chen K. F., He J. C., Chen W. L., “Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ”, Journal of Molecular Catalysis A: Chemical, 245(1):93-100 (2006).
Guaitella O., Thevenet F., Puzenat E., Guillard C., Rousseau A., “C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure”, Applied Catalysis B: Environmental, 80(3):296-305(2008).
Huang B., Lei C., Wei C., Zeng G., “Chlorinated volatile organic compounds (Cl-VOCs) in the environment - sources, potential human health impacts, and current remediation technologies”, Environment International, 71:118-138 (2014).
Indarto A., Choi J. W., Lee H., Song H. K., “Decomposition of greenhouse gases by plasma”, Environmental Chemistry Letters, 6:215-222 (2008).
Ivanova S., Pérez A., Centeno M. Á., Odriozola J. A., “Structured catalysts for volatile organic compound removal”, New and Future Developments in Catalysis Catalysis for Remediation and Environmental Concerns, 233-256 (2013).
Jun A., Kim J., Shin J., Kim G.,“Perovskite as a cathode material: A review of its Role in solid‐oxide fuel cell technology”, ChemElectroChem, 3(4):511-530 (2016).
Jiang N., Hu J., Li J., Shang K., Lu N., Wu Y., “Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas”, Applied Catalysis B: Environmental, 184:355-363 (2016).
Kaczynski M., van Ommen J. G.,“Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts”, Applied Catalysis B:Environmental, 36: 239-247 (2002).
Kim H. H., Ogata A., Futamura S.,“Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis”, IEEE Transactions on Plasma Science, 34(3):984-995 (2006).
Kaddouri K., Gelin P., Dupont N., “Methane catalytic combustion over La–Ce–Mn–O-perovskite prepared using dielectric heating”, Catalysis Communications, 10:1085-1089 (2009).
Karuppiah J., Sivachandiran L., Karvembu R., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol”, Chemical Engineering Journal, 165(1): 194-199 (2010).
Kim C. H., Qi G., Dahlberg K., Li W., “Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science”, 327(5973):1624-1627 (2010).
Karuppiah J., Reddy E. L., Reddy P. M. K., Ramaraju B., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene”, International Journal of Environmental Science and Technology, 11(2): 311-318 (2014).
Louis A. R., Graydon K. A., and John J. C., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 5378 (1993).
Liu Y., Shao M., Lu S., Chang C. C., Wang J. L., Fu L., “Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II”, Atmospheric Environment, 42(25):6261-6274 (2008).
Li H., Lu G., Dai Q., Wang Y., Guo Y., Guo Y., “Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres”, Applied Catalysis B: Environmental, 102(3): 475-483 (2011).
Liu G., Li J., Yang K., Tang W., Liu H., Yang J., Chen Y., “Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1− xCexMnO3 catalysts”, Particuology, 19:60-68 (2015).
Labhasetwar N., Saravanan G., Nagarajan S. K., Manwar N., Khobragade R., Doggali P., Grasset F., “Perovskite-type catalytic materials for environmental applications”, Science and Technology of Advanced Materials, 16(3):036002 (2015).
Marinova Y., Hohenberger J. M., Cordoncillo E., Escribano P., Carda J. B., “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments”, Journal of the European Ceramic Society, 23(2):213-220 (2003).
Miranda B., Diaz E., Ordonez S., Diez F. V., “Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study”, Catalysis Communications, 7:945-949 (2006).
Meyer C. I., Borgna A., Monzon A., Garetto T. F., “Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts”, Journal of Hazardous Materials, 190:903-908 (2011).
Nehra V., Kumar A., Dwivedi H. K., “Atmospheric non-thermal plasma source”, International Journal of Engineering, 2:53-68 (2008).
Neyts E. C., Bogaerts A., “Understanding plasma catalysis through modeling and simulation—a review”, Journal of Physics D Applied Physics, 47(22): 224010 (2014).
Norsic C., Tatibouët J. M., Batiot-Dupeyrat C., Fourré E., “Nonthermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3”, Chemical Engineering Journal, 304: 563-572 (2016).
Nguyen Dinha M. T., Giraudon J. M., Vandenbroucke A. M., Moreno R., De Geyter N., Lemonier J. F., “Manganese oxide octahedral molecular sieve K-OMS-2 as the catalyst in post plasma-catalysis for trichloroethylene degradation in humid air”, Journal of Hazardous Materials, 314:88-94 (2016).
Ogata A., Ito D., Mizuno K., Kushiyama S., Gal A., Yamamoto T., “Effect of coexisting components on aromatic decomposition in a packed - bed plasma reactor”, Applied Catalysis A: General, 236:9-15 (2002).
Ojala S., Lassi U., Peramaki P., Keiski R. L., “Effect of process parameters on catalytic incineration of solvent emissions”, Journal of Automated Methods & Management in Chemistry, 75:41-91 (2008)
Prager L., Langguth H., Rummel S., Mehnert R., “Electron beam degradation of chlorinated hydrocarbons in air”, Radiation Physics and Chemistry, 46(4-6):1137-1142 (1995).
Spinicci R., Faticanti M., Marini P., De Rossi S., Porta P., “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, Journal of Molecular Catalysis A: Chemical, 197(1-2): 147-155(2003).
Shang S., Liu G., Chai X., Tao X., Li X., Bai M., Yin Y., “Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet”, Catalysis Today, 148(3): 268-274 (2009).
Sui Z. J., Vradman L., Reizner I., Landau M. V., Herskowitz M., “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation”, Catalysis Communications, 12:1437-1441 (2011).
Sun Y., Zhou L., Zhang L., Sui, H., “Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal”, Journal of Environmental Sciences, 24(5): 891-896 (2012).
Sultana S., Vandenbroucke A. M., Leys C., De Geyter N., Moreno R. “Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review”, Catalysts, 5(2): 718-746 (2015).
Tichenor A. , Palazzolo, M. A., “Destruction of volatile organic compounds via catalytic incineration.”, Environment Progress, 6:172-176 (1987).
Trinh H. Q., Mok Y. S., “Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts”, Chemical Engineering Journal, 251:199-206(2014).
Van Durme J., Dewulf J., Leys C., Van Langenhove H., “Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment”: A review. Applied Catalysis B: Environmental, 78(3-4):324-333 (2008).
Vandenbroucke A. M., Mora M., Jiménez-Sanchidrián C., Romero-Salguero F. J., De Geyter N., Leys C., Moreno R., “TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst”, Applied Catalysis B: Environmental, 156-157:94-100 (2014).
Vandenbroucke, A. M., Moreno, R., De Geyter, N., Leys, C, “Non-thermal plasmas for noncatalytic and catalytic VOC abatement. Journal of hazardous materials”, 195:30-54 (2011).
Wu J., Xia Q., Wang H., Li Z., “Catalytic Performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor”, Applied Catalysis B: Environmental, 156:265-272 (2014).
Wang B., Chi C., Xu M., Wang C., Meng D., “Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge”, Chemical Engineering Journal, 322:679-692 (2017).
Zhang-Steenwinkel Y., Beckers J., Bliek A., “Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides”, Applied Catalysis A: General, 235:79-92 (2002).
Zhu J., Thomas A., “Perovskite-type mixed oxides as catalytic material for NO removal”, Applied Catalysis B: Environmental, 92(3-4):225-233 (2009).
Zhang C., Hu W., Wang C., Guo Y., Guo Y., Lu G., Baylet A., Giroir-Fendler A., “The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission”, Applied Catalysis B: Environmental, 134-135:310- 315 (2013).
Zhang C., Wang C., Zhan W., Guo Y., Guo Y., Lua G., Baylet A., Giroir-Fendlerb A., “Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts”, Applied Catalysis B: Environmental, 129:509-516 (2013).
Zheng C., Zhu X., Gao X., Liu L., Chang Q., Luo Z., Cen K., “Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor”, Journal of Industrial and Engineering Chemistry, 20(5):2761-2768 (2014).
Zhang C., Guo Y., Guo Y., Lu G., Boreave A., Retailleau L., Baylet A., Giroir-Fendler, A., “LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene”, Applied Catalysis B: Environmental, 148-149:490-498 (2014).
Zhang J., Tan D., Meng Q., Weng X., Wu Z., “Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance”, Applied Catalysis B: Environmental, 172-173:18-26 (2015).
Zhang C., Wang C., Hua W., Guo Y., Lu G., Gil S., Giroir-Fendler A., “Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride”, Applied Catalysis B: Environmental, 186:173-183 (2016).
MSDS危害物質危害數據資訊資料庫
環保署,半導體製造業空氣污染排放標準,(2002)
呂立德,化工動力與化工熱力,立功出版社,(1991)
高正雄,電漿化學,復漢出版社(台南) ,(1991)
黃柳青,化工動力學與反應設計下冊,科技出版社,(1993)
環保署,固定污染源揮發性有機物(VOC)收費可行性及衝擊評估計畫,(2000)