跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林俊佑
Chun-Yu Lin
論文名稱: 表面電漿子與粒子電漿子強化之光電生物感測器
Optical Biosensor with Surface plasmons and Particle plasmons enhancement
指導教授: 葉則亮
Tse-Liang Yeh
陳顯禎
Shean-Jen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 73
中文關鍵詞: 時域有限差分法粒子電漿子表面電漿子生物感測器
外文關鍵詞: surface plasmon, biosensor, particle plasmon, finite-difference time-domain
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿共振(surface plasmons reasnoance,SPR)之生物感測器其具有無需標定待測物(label free)與高靈敏度(high sensitivity)等優點,可即時量測分析生物分子間之作用情形然而在微小濃度下的小生物分子間作用時,傳統之SPR生物感測器的靈敏度能然顯得不足。因此,如何提升感測器之靈敏度,是目前主要的研究課題之一。本實驗室所提出的金屬奈米粒子強化之SPR生物感測器,藉由金屬奈米粒子的作用,已成功地將靈敏度提高10倍,達到100 fg/mm2表面生物分子覆蓋度之境界。而為了能夠更進一步提高靈敏度,因此了解表面電漿子(surface plasmons,SPs)與粒子電漿子(particle plasmons,PPs)之特性,其造成局域電磁場強化與感測器靈敏度間之關係是一重要的研究課題。
    在本論文中,首先利用Maxwell-Garnett(MG)等效介電常數理論,來描述金之奈米粒子層的特性,然而此理論限制條件太多,故無法滿足研究上的需求。因此加以時堿有限差分法(finite-difference time-domain method,FDTD Method)輔助,藉由模擬計算各種奈米膜層結構下之電磁場分佈情況,以了解表電漿子與粒子電漿子間的交互作用。我們將這些效應分別以單獨奈米粒子電漿子、奈米粒子間耦合作用(interparticle coupling)及奈米粒子層和金屬膜間作用(gap mode)等三部分逐一分析。


    Surface plasmon reasonance (SPR) biosensor has the advantages of label free and high sensitivity. However, the sensitivity is not good enough to analyze biomolecular interaction for small biomolecular in low concentration. Hence, the sensitivity improvement of biosensor is a very important works. We proposed a new metal nanostructure to increase the sensitivity. In the experimental result, we successfully demonstrate that the detection limit to reach can be achieved to 100pg/mm2 of the surface coverage of biomolecular. In order to approach the detection limit to 1fg/mm2, the characteristics of surface plasmons (SPs) and particle plasmons (PPs), such as local electro-magnetic (EM) field enhancement and sensing sensitivity improvement are needed to be studied.
    In this thesis, we use Maxwell-Garnett (MG) effective media theory to explain the gold-nanoparticle layer. The MG model can not completely match the experimental results. Hence, we use a finite-difference time-domain (FDTD) method to study nanoparticle effect more detail. The plasmon effects such as particle plasmon effect, interparticle coupling effect, and gap mode effect through different structures to enhance the EM field are simulated and studied.

    第一章 緒 論............................................................................................1 1-1 前言..................................................................................................1 1-2 研究動機與目的..............................................................................2 1-3 文獻回顧..........................................................................................3 1-4 論文架構........................................................................................10 第二章 表面電漿子................................................................................11 2-1 表面電漿共振現象........................................................................11 2-2 單一界面雙層結構之反射率.......................................................20 2-3 三層結構反射率及其色散關係式...............................................22 2-4 四層結構之反射率及其色散關係式...........................................26 第三章 粒子電漿子................................................................................29 3-1 球形粒子........................................................................................29 3-2 橢圓球粒子....................................................................................31 3-3 等效介電常數理論........................................................................33 第四章 多重電漿子效應模擬與分析....................................................35 4-1 奈米粒子吸收光譜........................................................................35 XI 4-2 奈米粒子之反射光強譜...............................................................37 4-3 時域有限差分法............................................................................39 4-3-1 粒子尺寸效應........................................................................42 4-3-2 粒子間效應............................................................................42 4-3-3 粒子與膜層間距效應............................................................43 4-3-4 討論與分析............................................................................44 第五章 結 論..........................................................................................68 參考文獻..................................................................................................70

    [1] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitativedetermination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” Journal of Colloid and Interface Science, 143, 513-526 (1991).
    [2] 簡汎清,超高解析度表面電漿共振生物感測器之研製,國立中央大學機械工程研究所碩士論文,6月,民國92年。
    [3] K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Letter, 3, 1087-1090 (2003).
    [4] S. Kawata, Near-Field Optics and Surface Plasmon Polaritions, Springer-Verlag, 2001.
    [5] J.P. Kottmann, O. J.F. Martin, D. R. Smith, and Sheldon Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Optics express, 6, 213-219 (2000).
    [6] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.
    Rev., 106, 874-881 (1957).
    [7] C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev., 118, 640-643 (1960).
    [8] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics, 25-78 (1987).
    [9] V. Owen, “Real-time optical immunosensors- a commercial reality,” Biosensors & Bioelectronics, 12, 1-2 (1997).
    [10] Z. Salamon, H.A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II: Applications to biological systems,” Biochimica et Biophysica Acta, 1331,131-152 (1997).
    [11] J. Homola and S.S. Yee, “Surface plasmon resonance senaors based on diffraction gratings and prism couplers: sensitivity comparison,”
    Sensors and Actuators B, 54, 16-24 (1999).
    [12] R. P. H. Kooyman, H. Kolkman, J.V. Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Analytica Chimica Acta, 213, 35-45 (1988).
    [13] P.I. Nikitin, A.A. Beloglazov, V.E. Kochergin et al, “Surface plasmon resonance interfreometry for biological and chemical sensing,” Sensors and Actuators B, 54, 43-50 (1999).
    [14] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, 4, 299-304 (1983).
    [15] Z. Salamon, H.A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonances: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophysical Journal, 73, 2791-2797 (1997).
    [16] Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophysical Journal, 80, 1557-1567 (2001).
    [17] G.G. Nenninger, J. Homola, S.S. Yee, and P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators B, 74, 145-151 (2001).
    [18] K.C. Grabar, R.G. Freeman, M.B. Hommer, and M.J. Natan, “Preparation and characterization of Au colloid monolayers,”Anal. Chem., 67, 735-743 (1995).
    [19] K.C. Grabar, K.R. Brown, C.D. Keating, S.J. Stranick, S.-L.Tang, and M.J. Natan, “Nanoscale characterization of gold colloid monolayers: a comparison of four techniques,” Anal Chem., 69, 471-477 (1997).
    [20] K.R. Brown, and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces,” Langmuir, 14, 726-728 (1998).
    [21] K.R. Brown, L.A. Lyon, A.P. Fox, B.D. Reiss, and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles. 3.controlled formation of conductive Au films,” Chem. Mater., 12, 314-323 (2000).
    [22] L.A. Lyon, D J. Peña, and M.J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B, 103, 5826-5831 (1999).
    [23] L.A. Lyon, M.D. Musick, P.C. Smith, B.D. Reiss, D.J. Peña, and M.J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sensors and Actuators B, 54, 118-124 (1999).
    [24] L.A. Lyon, M.D. Musick, and M.J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem., 70, 5177-5183 (1998).
    [25] R. F. Wallis and G. I. Stegeman, Electromagnetic Surface Excitations, Springer-Verlag, 1985.
    [26] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, 1988.
    [27] A. Yariv and P. Yeh, Optical Waves in Crystals, Propagation and Control of Laser Radiation, Wiley, 1984.
    [28] D. R. Tilley, K. Welford, J. R. Sambles, A. D. Boardman, T. Twardowski, and R. A. Innes, surface plasmon-polaritations, IOP Publishing Ltd, 1988.
    [29] P. F. Liao and A. Wokaun, ”Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys., 76, 751-752 (1982).
    [30] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, 1995.
    [31] T. Okamoto, I. Yamaguchi and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Optics Letters, 25, 372-374 (2000).
    [32] 高本慶,時域有限差分法,國防工業出版社,1995。

    QR CODE
    :::