跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭力捷
Li-Chieh Hsiao
論文名稱: Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice
指導教授: 陳俞融
Yu-Jung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 39
中文關鍵詞: 一氧化碳光致脫附分子冰晶緻密雲DIET
外文關鍵詞: CO, photodesorption, molecular ice, dense cloud, DIET
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光致脫附使冷凝的固態分子變為氣相,是造成分子雲中氣態分子異常豐富的原因之一。在實驗室中通過星際能量作用系統模擬可形成分子冰晶的天文環境,並以國家同步輻射研究中心天光光束線所提供之單色真空紫外線照射。本次實驗主要探討一氧化碳冰晶之光致脫附,結果證實分子冰晶脫附效益與分子受光激發之電子躍遷機率有關。且通過在一氧化碳冰晶上覆蓋不吸收真空紫外線的分子(如氮氣,氬氣或氪氣)生成雙層冰晶並以真空紫外線照射,結果表明受光激發之分子將部分能量給予鄰近分子並使其脫附為使光致脫附主要機制。同時在本研究中提出了一個模型,該模型可以良好的描述本次實驗數據,並可得知真空紫外線導致之脫附受分子冰晶的表面分子的組成、分子間結合能和冰晶之熱擴散係數的影響。


    The photon-stimulated desorption, or the photodesorption, is a pathway to make condensed molecules introduce into gas phase. It is a candidate to solve the abnormal abundance of gaseous molecules in the cold, dense cloud. The astronomical environment to form the molecular ice is simulated by Interstellar Energetic-Process System in laboratory. The irradiation of monochromatic vacuum ultraviolet (VUV) from National Synchrotron Radiation Research Center on CO, carbon monoxide, ice confirms the process of Desorption Induced by Electronic Transition. Through covering VUV-inactive molecules, such as N2, Ar or Kr, on 13CO and irradiate the designed two-layer ices, the results shows that indirect DIET is the main process to make molecules desorb. Meanwhile, a model is proposed in this study that can fit our experimental data, and the results indicate that VUV-photodesorption is affected by surface composition, binding energy and thermal diffusivity of the molecular ices.

    Contents page 摘要 v Abstract vii Acknowledgement ix Contents xi 1 Introduction 1 2 Experimental Set-up, Method 3 2.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 The Experimental Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Detection Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 The VUV Source from NSRRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 QMS Quantitative Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Definition of Photodesorption Rate and Yield . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Quantize Condensed Molecules by FTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 Quantize Condensed Molecules by QMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Deposition of the Ices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Monochromatic Light Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Temperature Programmed Desorption (TPD) . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Results and discussion 11 3.1 Desorption Yield and VUV Absorbance of the Ices . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 The Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 Factors Influencing Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.3 Direct and Indirect DIET in Two-Layer Ices . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 The Model for the Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Relative Desorbing Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 xiCONTENTS 3.2.2 Coverage Ratio on the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Relative Resorption Energy at the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Comparison between fitting parameter and direct measurement . . . . . . . . . . . . 19 4 Conclusions 21 Bibliography 23

    [1] M. Bertin, E. C. Fayolle, C. Romanzin, K. I. Öberg, X. Michaut, A. Moudens, L. Philippe, P.
    Jeseck, H. Linnartz, and J. H. Fillion, “UV photodesorption of interstellar CO ice analogues:
    From subsurface excitation to surface desorption,” Physical Chemistry Chemical Physics,
    vol. 14, no. 28, pp. 9929–9935, 2012, issn: 14639076. doi: 10.1039/c2cp41177f.
    [2] M. Bertin, E. C. Fayolle, C. Romanzin, H. A. Poderoso, X. Michaut, L. Philippe, P. Jeseck,
    K. I. Öberg, H. Linnartz, and J. H. Fillion, “Indirect ultraviolet photodesorption from
    CO:N2 binary ICES - An effcient grain-gas process,” Astrophysical Journal, vol. 779, no. 2,
    2013, issn: 15384357. doi: 10.1088/0004-637X/779/2/120.
    [3] E. C. Fayolle, M. Bertin, C. Romanzin, X. Michaut, K. I. Öberg, H. Linnartz, and J. H.
    Fillion, “CO ice photodesorption: A wavelength-dependent study,” Astrophysical Journal
    Letters, vol. 739, no. 2, pp. 1–5, 2011, issn: 20418205. doi: 10.1088/2041-8205/739/2/L36.
    [4] M. C. Van Hemert, J. Takahashi, and E. F. Van Dishoeck, “Molecular Dynamics Study
    of the Photodesorption of CO Ice,” Journal of Physical Chemistry A, vol. 119, no. 24,
    pp. 6354–6369, 2015, issn: 15205215. doi: 10.1021/acs.jpca.5b02611.
    [5] P. Avouris, “Fundamental Mechanisms Of Desorption And Fragmentation Induced By
    Electronic Transitions At Surfaces,” Annual Review of Physical Chemistry, vol. 40, no. 1,
    pp. 173–206, 1989, issn: 0066426X. doi: 10.1146/annurev.physchem.40.1.173.
    [6] D. Rapp and P. Englander-Golden, “Total cross sections for lonization and attachment in
    gases by electron impact. I. Positive ionization,” The Journal of Chemical Physics, vol. 43,
    no. 5, pp. 1464–1479, 1965, issn: 00219606. doi: 10.1063/1.1696957.
    [7] O. Kerkhof, W. A. Schutte, and P. Ehrenfreund, “The infrared band strengths of CH3OH,
    NH3 and CH4 in laboratory simulations of astrophysical ice mixtures,” Astronomy and
    Astrophysics, vol. 346, no. 3, pp. 990–994, 1999, issn: 00046361.
    [8] T. A. Scott, “Solid and liquid nitrogen,” Physics Reports, vol. 27, no. 3, pp. 89–157, 1976,
    issn: 03701573. doi: 10.1016/0370-1573(76)90032-6.
    [9] S. State, “The Sobd State of Rare Gases,” vol. I, no. 1957, 1963.

    QR CODE
    :::