| 研究生: |
葉詩恩 Shih-En Yeh |
|---|---|
| 論文名稱: |
氮化鋁/氮化鎵/氮化鋁銦場效電晶體設計及製程 Design and Fabrication of AlN/GaN/InAlN Field Effect Transistor |
| 指導教授: | 辛裕明 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 氮化鎵 、氮化鋁 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對在藍寶石基板上進行氮化鋁/氮化鎵/氮化鋁銦異質結構研究,場效電晶體設計,並進行不同閘極結構製程分析。
場效電晶體設計上,使用Silvaco TCAD模擬軟體來設計新穎的氮化鋁/氮化鎵/氮化鋁銦電晶體,確認二微電子雲( 2DEG )通道的存在,與源極及汲極區低電阻的特性改善。
在氮化鋁/氮化鎵/氮化鋁銦電晶體閘極製程上,做了三種不同的製程方法,分別為蕭特基閘極電晶體、金屬氧化物半導體電晶體、閘極掘入金屬氧化物半導體電晶體,分別探討分析三種不同製程在電性上的差異。元件在閘極長度為2 m、源極至汲極距離為12 m尺寸下,蕭特基閘極電晶體的臨界電壓為-5.5 V、汲極飽和電流IDSS為125 mA/mm、導通電阻為7.2 mΩ-cm2;金屬氧化物半導體電晶體相較蕭特基閘極電晶體則需要-7 V臨界電壓將元件關閉,而汲極電流提升至150 mA/mm、導通電阻降低為5 mΩ-cm2;閘極掘入金屬氧化物-導體電晶體的臨界電壓和金屬-氧化物-半導體電晶體相較從-7 V往右移至-3 V,電流降低為100 mA/mm、導通電阻為8 mΩ-cm2。
This thesis presents the study on epi-taxial layers and field-effect transistors based on AlN/GaN/InAlN grown on sapphire substrate .Transistor with different gate structures were also discussed.
Silvaco TCAD was used to design and simulate the field effect transistor for the location of 2DEG and improvement in source/drain resistance.
There were three different AlN/GaN/InAlN FET device structures in this study including Schottky gate FET, metal-oxide-semiconductor FET, and gate recess metal-oxide-semiconductor FET. The gate length of the fabricated device is 2 m and the distance between source and drain contacts is 12 m. The threshold voltage of the Schottky gate FET is -5.5 V, the on-state drain current is 125 mA/mm, and the turn on resistance is 7.2 mΩ-cm2. The threshold voltage of the metal-oxide-semiconductor FET is -7 V, the on-state drain current is 150 mA/mm, and the turn on resistance is 5 mΩ-cm2. The threshold voltage of the gate recess metal-oxidesemiconductor FET is -3 V, the on-state drain current is 100 mA/mm, the turn on resistance is 8 mΩ-cm2.
參考文獻
[1] H-S. Lee, D. Piedra, M. Sun, X. Gao, S. Guo, T. Palacios, “3000-V 4.3-mΩ•cm2 InAlN/GaN MOSHEMTs,” IEEE Electron Device Lett., vol.33, no.7, pp.982-984, Jul. 2012.
[2] D. Balaz, Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors, University of Glasgow, 2010.
[3] A. L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P. J. Willadsen, A. Schmitz, D. C. Wheeler, C. M. Butler, D. Brown, S. D. Burnham, M. Micovic, “Enhancement-Mode AlN/GaN/AlGaN DHFET With 700-mS/mm gm and 112-GHz fT,” IEEE Electron Device Lett., vol.31, no.10, pp.1116-1118, Oct. 2010.
[4] T.Oka, Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett., vol.29, no.7, pp.668-670, Jul. 2008.
[5] C. Y. Chang, S. J. Pearton, C. F. Lo, F. Ren, I. I. Kravchenko, A. M. Dabiran, A. M. Wowchak, B. Cui, P. P. Chow, “Development of enhancement mode AlN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol.94, issue.26, pp.263505-263505-3, Jun. 2009.
[6] Panasonic, Matsushita Electric (Panasonic) Develops A New Gallium Nitride (GaN) Power Transistor with Normally-off Operation, 2006.
[7] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, K. Boutros, “1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic ON-Resistance,” IEEE Electron Device Lett., vol.32, no.5, pp.632-634, May. 2011.
[8] B. Lu, M. Sun, T. Palacios, “An Etch-Stop Barrier Structure for GaN High-Electron -Mobility Transistors,” IEEE Electron Device Lett., vol.34, no.3, pp.369-371, Mar. 2013.
[9] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. V. Hove, M. Germain, G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Lett., vol.31, no.2, pp.111-113, Feb. 2010.
[10] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, Jong-Bong Park, J. C. Lee, J. Ha, J. Oh, J. Shin, U-In Chung, “p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Lett., vol.34, no.2, pp.202-204, Feb. 2013.
[11] D. Morgan, M. Sultana, H. Fatima, S. Sugiyama, Q. Fareed, V. Adivarahan, M. Lachab, A. Khan, “Enhancement-Mode Insulating-Gate AlInN/AlN/GaN Heterostructure Field-Effect Transistors with Threshold Voltage in Excess of +1.5 V,”Appl. Phys. Express., vol, p.114101, 2011.
[12] I. B. Rowena, S. L. Selvaraj, T. Egawa, “Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., Vol. 32, no.11, pp. 1534 - 1536, Nov. 2011.
[13] R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay , D. Jena, H. Xing, “210-GHz InAlN/GaN HEMTs With Dielectric-Free Passivation,” IEEE Electron Device Lett., Vol. 32, no.7, pp. 892 - 894, Jul. 2011.
[14] D. S. Lee, X. Gao, S. Guo, T. Palacios, “InAlN/GaN HEMTs With AlGaN Back Barriers,” IEEE Electron Device Lett., Vol. 32, no.5, pp. 617 - 619, May. 2011.
[15] D. S. Kim, K. S. Im, H. S. Kang, K. W. Kim, S. B. Bae, J. K. Mun, E. S. Nam, J. H. Lee, “Normally-Off AlGaN/GaN Metal–Oxide–Semiconductor Heterostructure Field-Effect Transistor with Recessed Gate and p-GaN Back-Barrier,” Jpn. J. Appl. Phys., Vol. 51, pp. 034101-1 - 034101-5, 2012.
[16] T.Oka, Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett., vol.29, no.7, pp.668-670, Jul. 2008.
[17] T. Huang, X. Zhu, K. M. Wong, K.M. Lau, “Low-Leakage-Current AlN/GaN MOSHFETs Using Al2O3 for Increased 2DEG,” IEEE Electron Device Lett., vol.33, no.2, pp.212-214, Feb. 2012.
[18] T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, H. G. Xing, “AlN/GaN Insulated-Gate With 2.3 A/mm Output Current and 480 mS/mmTransconductance,” IEEE Electron Device Lett., vol.29, no.7, p.661-664, Jul. 2008.
[19] T. Zimmermann, D. Deen, Y. Cao, D. Jena, H. G. Xing, “Formation of ohmic contacts to ultra-thin channel AlN/GaN HEMTs,” Phys. Stat. Sol.(c), vol.6, issue.6, pp. 2030 - 2032, 2008.
[20] C. Mizue, Y. Hori, M. Miczek, T. Hashizume, “Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3 /AlGaN
Interface,” Jpn. J. Appl. Phys., vol. 50, issue.2, pp.021001-021001-7, Feb. 2011.
[21] M. A. Khan, M. S. Shur, G. Simin, “Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces,” Phys. Stat. Sol.(a), vol.200, issue.1, pp.155-160, Nov. 2003.
[22] J. Kuzmík, G. Konstantinidis, S. Harasek, S. Hascík, E. Bertagnolli, A. Georgakilas, D. Pogany, “ZrO2/(Al)GaN metal–oxide–semiconductor structures: characterization and application, ” Semicond. Sci. Technol., vol.19, pp.1364-1368, Oct. 2004.
[23] S. A. bermann, G. Pozzovivo, J. Kuzmik, G. Strasser, D. Pogany, J-F Carlin, N. Grandjean , E. Bertagnolli, “MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs,”Semicond. Sci. Technol.,vol.22, no.12, pp.1272-1275, 2007.
[24] Tuomo.suntola, “Atomic Layer Epitaxy,” Material Science Reports, vol.4, 1989.
[25] D. J. Ruzyllo, “Atomic Layer Deposition ( ALD) ,” Material Science Reports, 2006.
[26] J. Son, V. Chobpattana, Brian M, McSkimming, S.Stemmer, “Fixed charge in high-k/GaN metal-oxide-semiconductor capacitor structures,” Appl. Phys. Lett., vol. 101, issue.10, pp.102905, Sep. 2012.
[27] D. Basak, M. Verd ´ u, M. T. Montojo, M. A. S´anchez-Garcia, F J. Sanchez, E Mu ˜noz, E.Calleja, “Reactive ion etching of GaN layers using SF6,” Semicond. Sci. Technol., vol. 12, pp.1654-1657, Sep. 1997.
[28] J. Kotani, M. Tajima, S. Kasai, T. Hashizume, “Mechanism of surface conduction in the vicinity of schottky gates on AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 91, issue.9, Aug. 2007.
[29] N. I. Kuznetsov, A. E. Nikolaev, A. S. Zubrilov, Y. V. Melnik, V. A. Dmitriev, “Insulating GaN: Zn layers grown by hydride vapor phase epitaxy on SiC substrates,” Appl. Phys. Lett., vol. 75, issue.20, pp.3138, Nov. 1999.
[30] J. B.Webb, H. Tang, S. Rolfe, J. A. Bardwell, “Semi-insulating C-doped GaN and high-mobolity AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy,” Appl. Phys. Lett., vol. 75, no.7, pp.953-955, Aug. 1999.
[31] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, “Surface passivation effects on AlGaN/GaN High-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride, ” Appl. Phys. Lett., vol. 84, no.4, pp.613-615, Jan. 2004.
[32] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, P. Kordos, “Effects of surface passivation on performance of AlGaN/GaN/Si HEMTs,”Solid-Statte Electron., vol. 47, issue.11, pp.2097-2103, Nov. 2003.
[33] R. A. Davies, D. J. Bazley, S. K. Jones, H. A. Lovekin, W. A. Phillips, R. H. Wallis, J. C. Birbeck, T. Martin, M. J. Uren, “The gate-length dependent performance of AlGaN/GaN HFETs with silicon nitride passivation,” Proceedings of the 8th IEEE International Symposium on High Performance EDMO, vol.76, 2000.
[34] X. Z. Dang, E. T. Yu, E. J. Piner, B. T. McDermott, “Influence of surface processing and passivation on carrier concentrations and transport properties in AlGaN/GaN hetrostructires,” J. Appl. Phys., vol. 90, issue.3, pp.1357 - 1361, Aug. 2001.
[35] D. Jin, Jesús A, d. Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” Power Semiconductor Devices and ICs (ISPSD), pp.333- 336, Jun. 2012.
[36] S. Huang, Q. Jiang, S. Yang, C. Zhou, K. J. Chen, “Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film,” IEEE Electron Device Lett., Vol.33, pp.516-518 , 2012.
[37] J.B.I, W.J.Schaffi I, G.H.Martin I, L.F.Eastman I, H.Amano, I.Akasakf, “Recessed Gate GaNMODFETs,”Solid-Statte Electron., Vol. 41, pp.247-250, 1997.