跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李俊廷
Chun-Ting Li
論文名稱: 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
Piecewise Bilinear Approximations to the 2-D Stationary Incompressible Navier-Stokes Problem by Least-Squares Finite Element Methods
指導教授: 楊肅煜
Suh-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 92
語文別: 英文
論文頁數: 46
中文關鍵詞: 凹槽驅動流場皮卡型迭代法奧辛問題最小平方有限元素法那維爾-史托克問題
外文關鍵詞: driven cavity flows, velocity-vorticity-total pressure formulation, least-squares finite element methods, Oseen equations, velocity-vorticity-pressure formulation, Navier-Stokes equations
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要研究二維穩態不可壓縮那維爾-史托克問題在給定速度邊界值情況下的最小平方有限元素法之片狀線性數值解。首先引入兩個新未知函數〝旋度和總壓力〞後,將那維爾-史托克問題分別改寫成〝速度-旋度-壓力〞和〝速度-旋度-總壓力〞兩個一階偏微分方程組。接著我們引用L2最小平方與網格依賴加權最小平方有限元素法求解源自於皮卡型迭代法所產生的系列奧辛問題。其中相對應的最小平方能量泛函定義在一個適當乘積函數空間下,分別取每項偏微分方程式殘餘的L2模未加權或加權之平方和。數值實驗證明,在雷諾數小的時候,L2最小平方法比網格依賴加權最小平方法更準確;然而對大雷諾數的問題,網格依賴加權最小平方法比L2最小平方法明顯地好很多。最後列出在不同雷諾數下凹槽驅動流場的數值結果。


    In this thesis, we study the piecewise bilinear finite element approximations to the two-dimensional stationary incompressible Navier-Stokes equations with the velocity boundary condition by using the least-squares principles.
    The Navier-Stokes problem is first recast into the velocity-vorticity-pressure and velocity-vorticity-total pressure first-order systems by introducing the vorticity variable and, in addition, total pressure variable. We then apply both the L2 least-squares and mesh-dependent weighted least-squares finite element schemes
    to approximate the solutions of the sequence of Oseen problems arising from a Picard-type iteration associated with these first-order systems. The corresponding least-squares energy functionals are defined in terms of the sum of the squared L2 norms without or with mesh-dependent weights of the residual equations over a product function space. Numerical evidences show that, for low Reynolds number flows, the L2 least-squares method is more accurate than the mesh-dependent weighted least-squares method.
    For flows with large Reynolds numbers, the mesh-dependent weighted least-squares method is apparently better than the L2 least-squares method. Some numerical results for driven cavity flows with various Reynolds numbers are also given.

    Abstract 1 1. Problem formulation 2 2. Least-squares finite element methods 5 3. Some theoretical results for the Oseen problem 9 4. Numerical results for smooth exact solutions 10 5. Numerical results for driven cavity flows 18 6. Conclusions 44 References 45

    [1] P. B. Bochev, Analysis of least-squares finite element methods for the
    Navier-Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
    [2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite
    element methods for the Stokes equations, Math. Comp., 63 (1994),
    pp 479-506.
    [3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares
    type, SIAM Rev., 40 (1998), pp 789-837.
    [4] P. B. Bochev, Z. Cai, T. A. Manteuffel and S. F. McCormick, Analysis of
    velocity-flux first-order system least-squares principles for the Navier-
    Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
    [5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
    Methods, Springer-Verlag, New York, 1994.
    [6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
    Springer-Verlag, New York, 1991.
    [7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares
    for velocity-vorticity-pressure form of the Stokes equations, with
    application to linear elasticity, ETNA, 3 (1995), pp. 150-159.
    [8] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least
    squares for the Stokes equations, with application to linear elasticity,
    SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.
    [9] C. L. Chang, An error estimate of the least squares finite element
    method for the Stokes problem in three dimensions, Math. Comp., 63 (1994),
    pp. 41-50.
    [10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite
    element method of velocity-pressure-vorticity formulation for Stokes
    problem, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
    [11] C. L. Chang and J. J. Nelson, Least-squares finite element method for the
    Stokes problem with zero residual of mass conservation, SIAM J. Numer.
    Anal., 34 (1997), pp. 480-489.
    [12] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares finite element
    method for incompressible flow in stress-velocity-pressure version,
    Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
    [13] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite
    element method for the velocity-vorticity-pressure Stokes equations
    with velocity boundary conditions, Appl. Math. Comput., 130 (2002),
    pp. 121-144.
    [14] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite
    element methods for the Stokes equations, 20 (1998), pp. 878-906.
    [15] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-
    squares mixed finite element method for the 3D Stokes equations,
    SIAM J. Numer. Anal., 41 (2003), pp. 2114-2130.
    [16] M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman Group UK
    Limited, 1993.
    [17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes
    Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
    [18] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag,
    Berlin, 1998.
    [19] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H(-1), L2, L2]
    first-order system least squares for the incompressible Oseen type
    equations, to appear in Appl. Numer. Math.
    [20] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least-
    squares finite element method for the stationary incompressible Oseen
    problem, submitted for publication, 2004.
    [21] S.-Y. Yang, Error analysis of a weighted least-squares finite
    element method for 2-D incompressible flows in velocity-stress-pressure
    formulation, Math. Meth. Appl. Sci., 21 (1998), pp. 1637-1654.

    QR CODE
    :::