| 研究生: |
楊凱木疌 Kai-jie Yang |
|---|---|
| 論文名稱: |
利用遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相永磁同步馬達定位驅動系統 Recurrent Fuzzy Neural Cerebellar Model Articulation Network Fault-Tolerant Control of Six-Phase PMSM Position Servo Drive |
| 指導教授: |
林法正
Faa-jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 六相永磁同步馬達 、錯誤容忍控制 、數位訊號處理器 、遞迴式小腦模型網路 、遞迴式模糊類神經網路 、遞迴式模糊類神經小腦模型網路 |
| 外文關鍵詞: | Six-phase permanent synchronous motor, Fault-tolerant control, Digital signal processor, Recurrent fuzzy cerebellar model articulation network, Recurrent fuzzy neural network, Recurrent fuzzy neural cerebellar model articulation network |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是研製以數位訊號處理器為基礎之遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相永磁同步馬達定位驅動系統。首先,本研究將錯誤偵測以及錯誤容忍控制應用在六相永磁同步馬達定位驅動系統上。接著,將所設計好的理想轉矩控制器應用在定位系統控制上做馬達轉子機械位置命令的追隨。由於六相永磁同步馬達定位系統上所存在的不確定項是難以估計的,因此在實際應用上理想轉矩控制法則是難以獲得的。有鑒於此,本研究提出了遞迴式模糊類神經小腦模型網路來近似理想轉矩控制器,並加入補償控制器來消除近似誤差,另外一種方法則是採用遞迴式模糊類神經小腦模型網路作為估測器來估測計算轉矩控制法則的非線性項,並以強健控制器來補償其重建誤差。在遞迴式模糊類神經小腦模型網路的架構上分成兩個輸入維度,第一個輸入維度採用了小腦模型網路來提升其線上學習率以及網路區域化的學習能力。除此之外,輸入的第二維度採用了遞迴式模糊類神經網路,此方法除了提升網路歸納能力外更有效的減少記憶體使用需求。最後,本研究以32位元浮點運算數位訊號處理器完成了所提出的錯誤容忍控制定位驅動系統,且利用實驗結果來驗證所提出的遞迴式模糊類神經小腦模型網路錯誤容忍控制定位驅動系統的控制成效。
A DSP-based recurrent fuzzy neural cerebellar model articulation network (RFNCMAN) fault-tolerant control of a six-phase PMSM position servo drive system is proposed in this study. First, the fault detection and operating decision method of the six-phase PMSM position servo drive is developed. Then, an ideal computed torque controller is designed for the tracking of the rotor position reference command first. Since the uncertainties of the six-phase PMSM position servo drive system are difficult to know in advance, it is impossible to design an idea computed control law for practical application. Therefore, one method is that the RFNCMAN is proposed to mimic the ideal computed torque controller with a compensated controller to eliminate the approximation error. The other method is that the RFNCMAN is proposed to estimate a nonlinear equation included in the idea computed control law with a robust compensator designed to compensate the minimum reconstructed error. In the RFNCMAN, a recurrent fuzzy cerebellar model articulation network (RFCMAN) is adopted in the first dimension to enhance the online learning rate and localization learning capability. Moreover, a general recurrent fuzzy neural network (RFNN) is adopted in the second dimension to enhance the generalization performance and to reduce the required memory and rule numbers. Finally, the proposed fault-tolerant position control system is implemented in a 32-bit floating-point DSP. The effectiveness of the proposed RFNCMAN fault-tolerant control for the six-phase PMSM position servo drive system is verified by some experimental results.
參考文獻
[1] Y. P. Kuo, H. H. Hsieh, N. S. Pai, and C. L. Kuo, “The application of CMAC-based fall detection in Omni-directional mobile robot,” in Proc. IEEE Conf. Advanced Robotics and Intelligent Systems, May 2013, pp. 64-69.
[2] C. H. Lin, M. K. Lin, R. C. Wu, and S. Y. Huang, “Integral backstepping control for a PMSM drive using adaptive FNN uncertainty observer,” in Proc. IEEE Conf. Industrial Electronics, May 2012, pp. 668-673.
[3] L. Yi and P. Yonghong, “Application of fuzzy neural network in the speed control system of induction motor,” in Proc. IEEE Conf. Computer Science and Automation Engineering, Jun. 2011, pp. 673-677.
[4] Nest, https://www.nest.com.tw/。
[5] HITACHI, http://www.hitachi.com.tw/。
[6] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots: Atutorial,” in Proc. IEEE Conf. Decision Control, 1988, pp. 1575–1584.
[7] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.
[8] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[9] R. Johansson, “Adaptive control of robot manipulator motion,” IEEE Trans. Robot. Automat., vol. 6, no. 4, pp. 483–490, Aug. 1990.
[10] C. Y. Su and T. P. Leung, “A sliding mode controller with bound estimation for robot manipulators,” IEEE Trans. Robot. Automat., vol. 9, no. 2, pp. 208–214, Apr. 1993.
[11] J. Imura, T. Sugie, and T. Yoshikawa, “Adaptive robust control of robot manipulators-theory and experiment,” IEEE Trans. Robot. Automat., vol. 10, no. 5, pp. 705–710, Oct. 1994.
[12] M. Teshnehlab and K. Watanabe, “Self tuning of computed torque gains by using neural networks with flexible structures,” Proc. Inst. Elect. Eng. Control Theory Appl., vol. 141, no. 4, pp. 235–242, Jul. 1994.
[13] F. J. Lin, Y. S. Lin, and S. L. Chiu, “Slider-crank mechanism control using adaptive computed torque technique,” Proc. Inst. Elect. Eng. Control Theory Appl., vol. 145, no. 3, pp. 364–376, May 1998.
[14] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall, 1996.
[15] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive
control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872–3879, Oct. 2009.
[16] K. Kiguchi and T. Fukuda, “Intelligent position/force controller for industrial robot manipulators-application of fuzzy neural networks,” IEEE Trans. Syst., Man, and Cybern., vol. 34, no. 1, pp. 309–324, Dec. 2004.
[17] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
[18] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 676–692, Jun. 2008.
[19] A. Gajate, R. E. Haber, P. I. Vega, and J. R. Alique, “A transductive neuro fuzzy controller: Application to a drilling process,” IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1158–1167, Jul. 2010.
[20] C. S. Chen, “Supervisory interval type-2 TSK neural fuzzy network control for linear microstepping motor drives with uncertainty observer,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 2049–2064, Jul. 2011.
[21] R. J. Wai and L. C. Shih, “Adaptive fuzzy-neural-network design for voltage tracking control of a dc-dc boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, Apr. 2012.
[22] W. T. Miller, “Sensor-based control of robotic manipulators using a general learning algorithm,” IEEE. J. Robot and Autom., vol. 3, no. 2, pp. 157-165, Apr. 1987.
[23] S. C. Huang and B. H. Chen, “Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems,” IEEE Trans. Neural Netw. and Learning Syst., vol. 24, no. 12, pp. 1920–1931, Dec. 2013.
[24] D. Xu, Y. Huang, M. Tan, and H. Su, “Adding active learning to LWR for Ping-Pong playing robot”, IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1489–1494, Jul. 2013.
[25] Q. Ding, J. Tang, and J. Liu, “Application of new FCMAC neural network in power system marginal price forecasting,” in Proc. IEEE Conf. Power Engineering, Nov. 2005, pp. 1-5.
[26] F. J. Lin and R. J. Wai, “Hybrid control using recurrent fuzzy neural network for linear-induction motor servo drive,” IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 102–¬115, Feb. 2001.
[27] C. M. Wen and M. Y. Cheng, “Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5105–¬5115, Nov. 2013.
[28] R. J. Oentaryo, M. Pasquier, and C. Quek, “RFCMAC: A novel reduced localized neuro-fuzzy system approach to knowledge extraction,” Expert Syst. with Appl., vol. 38, no. 10, pp. 12066-12084, Sep. 2011.
[29] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to improve the reliability of PWM inverter drives,” IEEE Trans. Ind. Appl., vol. 26, no. 1, pp. 143–150, Jan./Feb. 1990.
[30] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase induction motor with third harmonic current injection,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1351–1360, Sep./Oct. 2002.
[31] H. Zhang, A. von Jouanne, S. Dai, A. K. Wallace, and F. Wang, “Multilevel inverter modulation schemes to eliminate common-mode voltages,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1645–1653, Nov./Dec. 2000.
[32] Y. Izumikawa, K. Yubai, and J. Hirai, “Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer,” IEEE/ASME Trans. Mechatron., vol. 10, no. 4, pp. 391–396, Aug. 2005.
[33] R. Kianinezhad, B. Nahid-Mobarakeh, L. Baghli, F. Betin, and G. A. Capolino, “Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 1966–1977, May 2008.
[34] M. A. Fnaiech, F. Betin, G. A. Capolino and F. Fnaiech, “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Trans. Ind. Appl., vol. 57, no. 1, pp. 354–364, Jan. 2010.
[35] M. E. H. Benbouzid, D. Diallo, and M. Zeraoulia, “Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: From conventional to modern and intelligent control techniques,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 519–528, Mar. 2007.
[36] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
[37] 蔡孟庭,“智慧型錯誤容忍控制六相永磁同步馬達驅動系統之開發”,碩士論文,中央大學電機系,民國一百零一年。
[38] 許尚文,“六相永磁式同步電動機之設計與控制”,碩士論文,台灣科技大學電機系,民國九十五年。
[39] 王俊超,“六相永磁式同步電動機驅動器之分析與設計”,碩士論文,台灣科技大學電機系,民國九十四年。
[40] 吳泰廷,“六相永磁式同步電動機驅動系統之故障後控制策略”,碩士論文,台灣科技大學電機系,民國九十八年。
[41] M. A. Shamsi-Nejad, B. Nahid-Mobarakeh, S. Pierfederici, and F. Meibody-Tabar, “Fault tolerant and minimum loss control of double-star synchronous machines under open phase conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1956–¬1965, May 2008.
[42] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747–¬5762, Dec. 2013.
[43] F. J. Lin, Y. C. Hung, J. C. Hwang, and M. T. Tsai, “Fault-tolerant control of a six-phase motor drive system using a Takagi–Sugeno–Kang type fuzzy neural network with asymmetric membership function,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557–3572, Jul. 2013.
[44] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872–3879, Oct. 2009.
[45] Y. Wong and A. Sideris, “Learning convergence in the cerebellar model articulation controller,” IEEE Trans. Neural Netw., vol. 3, no. 1, pp.115–121, Jan. 1992.
[46] K. Kiguchi and T. Fukuda, “Intelligent position/force controller for industrial robot manipulators-application of fuzzy neural networks,” IEEE Trans. Syst., Man, and Cybern., vol. 34, no. 1, pp.309–324, Dec. 2004.
[47] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
[48] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 676–692, Jun. 2008.
[49] A. Gajate, R. E. Haber, P. I. Vega, and J. R. Alique, “A transductive neuro fuzzy controller: Application to a drilling process,” IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1158–1167, Jul. 2010.
[50] C. S. Chen, “Supervisory interval type-2 TSK neural fuzzy network control for linear microstepping motor drives with uncertainty observer,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 2049–2064, Jul. 2011.
[51] R. J. Wai and L. C. Shih, “Adaptive fuzzy-neural-network design for voltage tracking control of a dc-dc boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, Apr. 2012.
[52] S. Wang and A. Wu, “Fuzzy cerebellar model articulation controller (FCMAC) for vibration control on ocean engineering vehicles,” in Proc. IEEE Conf. Natural Computation, Aug. 2010, pp. 297-302.
[53] C. Lin, R. Xu, C. Kwan, and L. Haynes, “Submarine pitch and depth control using FCMAC neural networks,” in Proc. IEEE Conf. American Control, Jun. 1998, pp.379-383.
[54] S. Wang, “Fuzzy Cerebellar Model Articulation Controller (FCMAC) for Vibration Control of Semi-Active Suspension System,” in Proc. IEEE Conf. Artificial Reality and Telexistence--Workshops, Dec. 2006, pp.224-227.
[55] J. S. Albus, “Data storage in the cerebellar model articulation controller (CMAC),” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 97, no. 3, pp. 228–233, Sep. 1975.
[56] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 97, no. 3, pp. 220–227, Sep. 1975.
[57] 劉君舫,“小腦模型控制器(CMAC)學習方法之研究”,碩士論文,台灣科技大學電機研究所,民國九十三年。
[58] B. K. Bose, Modern power electronics and AC drives. Prentice Hall, 2001.
[59] 王進德,『類神經網路與模糊控制理論入門與應用』,台北市,全華科技圖書股份有限公司,2008年。
[60] T. H. Liu, J. R. Fu, and T. A. Lipo, “A strategy for improving reliability of field-oriented controlled induction motor drives,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 910–918, Sep./Oct. 1993.