跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林鶴育
He-Yu Lin
論文名稱: 低速液滴撞擊浴池的運動行為
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 58
中文關鍵詞: 聚結彈跳馬蘭戈尼效應表面張力波
外文關鍵詞: Coalescence, Bouncing, Marangoni effect, Surface tension waves
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液滴撞擊浴池時會發生聚結、飄浮、飛濺和彈跳,其中彈跳現象會顯著影響技術應
    用,如:引擎燃料噴射、噴墨列印和噴墨塗裝等。因此,本論文著重觀察液滴在不同撞
    擊速度與不同浴池溫度下的彈跳現象行為。液滴和浴池均使用相同的矽油。
    本文研究針對液滴最大穿刺時間、彈跳時間、彈跳週期、穩定時間、表面波分析、
    停留時間隨實驗條件的變化情形進行觀察。最大穿刺時間、彈跳時間、週期和穩定時間
    與韋伯數及溫差無關。最大穿刺時間和彈跳時間隨著液滴直徑的增加而增加,而週期和
    穩定時間則隨液滴直徑增加略微增長。波速則與韋伯數、直徑和溫差無關。另一方面,
    液滴停留時間會隨著溫差的增加而增加,並且隨著撞擊速度的增加而有增長的趨勢,僅
    少部分結果例外。
    而針對實驗數據進行無因次分析進一步發現,將最大穿刺時間對毛細時間尺度(
     s
    )
    無因次化後會變成一個常數。無因次彈跳時間、無因次彈跳週期和無因次穩定時間會隨
    著液滴直徑的增加而稍微減小。無因次波速則介於表面張力波相速度與群速度之間。為
    了分析熱毛細流的影響,我們引入了延遲時間
    d
     ,來描述相對於均溫情況下停留時間的
    增加,並以溫度差來定義馬蘭戈尼數
    Ma。結果顯示
    / d th  
    會隨
    Ma
    的增加而增加。而無
    因次延遲時間則與液滴直徑和速度無關。實驗結果顯示,浴池溫度的升高對於液滴彈跳
    這樣的短期行為並沒有影響,但會延長液滴在浴池上飄浮的時間。


    When droplets impact a liquid pool, they may undergo some processes such as coalescence,
    floating, splashing, and bouncing. The bouncing phenomenon significantly affects various
    technological applications such as engine fuel injection, inkjet printing, and inkjet coating. This
    study focuses on the bouncing behavior of droplets upon liquid pools at different impact
    velocities and increasing pool temperatures. The droplets and liquid pools were of the same
    silicon oil.
    We conducted the experiments on various aspects, including the penetration time,
    bouncing time, bouncing period, settling time, surface wave, and residence time, in response to
    changes in experimental conditions. The penetration time, bouncing time, bouncing period, and
    settling time were unrelated to the Weber number and temperature difference between the
    droplet and liquid bath. The penetration and bouncing times increased with an increase in
    droplet diameter, and the bouncing period and settling time exhibited a slight increase with
    increasing droplet diameter. The wave speed was unrelated to the Weber number, diameter, and
    temperature difference. On the other hand, the residence time increased with an increase in
    temperature difference and showed an increasing trend with increasing impact velocity, with
    only a few exceptions in the results.
    Further analysis of the experimental data through dimensionless analysis revealed that the
    dimensionless penetration time scaled by capillary time
     th
    reduced to a constant. The
    dimensionless bouncing time, bouncing period, and settling time slightly decrease with an
    increase in droplet diameter. The dimensionless wave speed fell between the surface tension
    wave phase and group velocities. To analyze the influence of thermocapillary flow on droplet
    floatation, we introduced a delay time
    d

    indicating the increase in residence than the uniform
    temperature case and defined the Marangoni number based on the temperature difference. The
    results showed that
    / d th  
    increases with the increase in
    Ma . The dimensionless delay time,
    iii
    however, is unrelated to droplet diameter and velocity. Experimental results revealed that
    increased bath temperature had no impact on the short-term behaviors of droplet bounce but
    prolonged the droplet floatation above the bath.

    目錄 摘要.............................................................................................................................................i Abstract....................................................................................................................................... ii 目錄........................................................................................................................................... iv 圖目錄....................................................................................................................................... vi 表目錄..................................................................................................................................... viii 符號表........................................................................................................................................ x 第一章 緒論..............................................................................................................................1 1.1 研究動機 ..........................................................................................................................1 1.2 文獻回顧 ..........................................................................................................................2 1.2.1 液滴的運動行為........................................................................................................2 1.2.2 溫度效應的影響........................................................................................................7 1.3 研究目的 ..........................................................................................................................8 第二章 實驗系統......................................................................................................................9 2.1 實驗裝置 ..........................................................................................................................9 2.1.1 注射系統....................................................................................................................9 2.1.2 溫控系統....................................................................................................................9 2.1.3 環境控制系統............................................................................................................9 2.1.4 影像系統..................................................................................................................10 2.2 實驗流體 ........................................................................................................................11 2.3 實驗條件 ........................................................................................................................13 v 2.4 實驗步驟 ........................................................................................................................13 第三章 結果與討論................................................................................................................14 3.1 液滴最大穿刺時間 ........................................................................................................14 3.2 液滴彈跳時間 ................................................................................................................15 3.3 液滴彈跳週期 ................................................................................................................23 3.4 液滴穩定時間 ................................................................................................................28 3.5 表面波分析 ....................................................................................................................33 3.6 液滴停留時間 ................................................................................................................36 第四章 結論............................................................................................................................39 4.1 結論 ................................................................................................................................39 4.2 未來展望 ........................................................................................................................39 參考文獻..................................................................................................................................40

    Amin, S., & Panchal, H. (2016). A review on thermal spray coating processes. transfer, 2(4),
    556-563.
    Aryafar, H., & Kavehpour, H. P. (2006). Drop coalescence through planar surfaces. Physics of
    Fluids, 18(7).
    Avedisian, C. T., Osborne, W. S., McLeod, F. D., & Curley, C. M. (1999). Measuring bubble
    nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed
    in a pool of water. Proceedings of the Royal Society of London. Series A: Mathematical,
    Physical and Engineering Sciences, 455(1991), 3875-3899.
    Bach, G. A., Koch, D. L., & Gopinath, A. (2004). Coalescence and bouncing of small aerosol
    droplets. Journal of fluid mechanics, 518, 157-185.
    Charles, G. E., & Mason, S. G. (1960). The coalescence of liquid drops with flat liquid/liquid
    interfaces. Journal of Colloid Science, 15(3), 236-267.
    Chen, X., Mandre, S., & Feng, J. J. (2006). Partial coalescence between a drop and a liquidliquid interface. Physics of Fluids, 18(5).
    Couder, Y., Fort, E., Gautier, C. H., & Boudaoud, A. (2005). From bouncing to floating:
    Noncoalescence of drops on a fluid bath. Physical review letters, 94(17), 177801.
    Dell’Aversana, P., Tontodonato, V., & Carotenuto, L. (1997). Suppression of coalescence and
    of wetting: The shape of the interstitial film. Physics of Fluids, 9(9), 2475-2485.
    Dell'Aversana, P., & Neitzel, G. P. (1998). When liquids stay dry. Physics today, 51(1), 38-41.
    Geri, M., Keshavarz, B., McKinley, G. H., & Bush, J. W. (2017). Thermal delay of drop
    coalescence. Journal of Fluid Mechanics, 833, R3.
    Guigon, R., Chaillout, J. J., Jager, T., & Despesse, G. (2008). Harvesting raindrop energy:
    experimental study. Smart Materials and Structures, 17(1), 015039.
    41
    Kavehpour, P., Ovryn, B., & McKinley, G. H. (2002). Evaporatively-driven Marangoni
    instabilities of volatile liquid films spreading on thermally conductive substrates. Colloids
    and Surfaces A: Physicochemical and Engineering Aspects, 206(1-3), 409-423.
    Leng, L. J. (2001). Splash formation by spherical drops. Journal of Fluid Mechanics, 427, 73-
    105.
    Linne, M. A., Paciaroni, M., Berrocal, E., & Sedarsky, D. (2009). Ballistic imaging of liquid
    breakup processes in dense sprays. Proceedings of the Combustion Institute, 32(2), 2147-
    2161.
    Moreira, A. L. N., Moita, A. S., & Panao, M. R. (2010). Advances and challenges in explaining
    fuel spray impingement: How much of single droplet impact research is useful?. Progress
    in energy and combustion science, 36(5), 554-580.
    Pasandideh-Fard, M., Pershin, V., Chandra, S., & Mostaghimi, J. (2002). Splat shapes in a
    thermal spray coating process: simulations and experiments. Journal of thermal spray
    technology, 11, 206-217.
    Ricci, E., Sangiorgi, R., & Passerone, A. (1986). Density and surface tension of dioctylphthalate,
    silicone oil and their solutions. Surface and Coatings Technology, 28(2), 215-223.
    Tang, X., Saha, A., Law, C. K., & Sun, C. (2016). Nonmonotonic response of drop impacting
    on liquid film: Mechanism and scaling. Soft Matter, 12(20), 4521-4529.
    Tovar, M., Mahler, L., Buchheim, S., Roth, M., & Rosenbaum, M. A. (2020). Monitoring and
    external control of pH in microfluidic droplets during microbial culturing. Microbial cell
    factories, 19(1), 1-9.
    Wu, Z., Hao, J., Lu, J., Xu, L., Hu, G., & Floryan, J. M. (2020). Small droplet bouncing on a
    deep pool. Physics of Fluids, 32(1).
    Yeganehdoust, F., Attarzadeh, R., Karimfazli, I., & Dolatabadi, A. (2020). A numerical analysis
    of air entrapment during droplet impact on an immiscible liquid film. International
    Journal of Multiphase Flow, 124, 103175.
    42
    Zhan, Z., An, J., Wei, Y., & Du, H. (2017). Inkjet-printed optoelectronics. Nanoscale, 9(3), 965-
    993.
    Zhao, H., Brunsvold, A., & Munkejord, S. T. (2011). Transition between coalescence and
    bouncing of droplets on a deep liquid pool. International Journal of Multiphase
    Flow, 37(9), 1109-1119.
    Zou, J., Ren, Y., Ji, C., Ruan, X., & Fu, X. (2013). Phenomena of a drop impact on a restricted
    liquid surface. Experimental Thermal and Fluid Science, 51, 332-341.
    Zou, J., Wang, P. F., Zhang, T. R., Fu, X., & Ruan, X. (2011). Experimental study of a drop
    bouncing on a liquid surface. Physics of Fluids, 23(4).

    QR CODE
    :::