| 研究生: |
蔡佳樺 Jia-Hua Tsai |
|---|---|
| 論文名稱: |
一般式鈣鈦礦太陽能電池的高分子電洞傳遞層與吸收層之界面修飾層研究 Research on the Modification of Polymer Hole Transporter/Absorber layer Interface of the Regular Perovskite Solar Cells |
| 指導教授: | 吳春桂 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 鈣鈦礦 、高分子 、電洞傳遞層 、界面修飾 、一般式 |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSC),由於組裝過程簡易且材料價格便宜,因此製作成本低而快速發展。至2021年PSC元件已驗證的光電轉換效率已達25.5%。PSC元件中所使用的電洞傳遞層(hole transporting layer, HTL)材料須具備高電洞萃取效率、快速電洞傳遞及與鈣鈦礦層的valence band (VB)與conduction band (CB)能階匹配等特性。Spiro-OMeTAD、P3HT等是常用的PSC HTL材料。本研究利用本實驗室合成之P12、P15、P16、P17、P18、P19、P20、P21等7個高分子作為PSC元件之HTL材料,利用高分子疏水的特性,增加PSC元件的長時間穩定性。將高分子材料溶於高沸點溶劑中使沉積的膜排列具有較高的規則度,並以4-Iso-propyl-4‘-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate (簡稱DPI-TPFB)作為摻雜劑,並在鈣鈦礦(Psk)膜與高分子HTL之間沉積一層2-Bromo-5-hexylthiophene (簡稱BHT)膜以修飾界面並可階梯式將電洞由鈣鈦礦層傳遞至電洞傳遞層,降低電位損耗,增加PSC元件的光電轉換效率,結果以P15及P18的光伏特性比P3HT好。P15膜沉積在Psk上時又比較不會聚集(相對於P18),可降低電洞在膜上傳遞時發生載子再結合。DPI-TPFB摻雜之P15(DPI-TPFB@P15)的HOMO能階為-5.44 eV與鈣鈦礦膜的VB能階-5.61 eV匹配性比DPI-TPFB@P18更好,因此能更有效率的萃取電洞,以DPI-TPFB@P15膜作為HTL相較於DPI-TPFB@P18膜組裝成元件有更高的Voc值為1.00 V。以DPI-TPFB@P15、DPI-TPFB@P18、及DPI-TPFB@P3HT作為HTLs組裝成元件的光電轉換效率分別為17.08%、11.75、11.63%。若再以BHT作介面修飾,元件的光電轉換效率分別提高至18.17 %、15.03 %、及14.79 %,遲滯因子則分別為9.1 %、6.7 %、13.9 %。
The rapid progress of perovskite solar cell (PSC) is due to it has a simple assembly process, high efficiency and uses few materials, therefore the manufacturing cost is low. The certified power conversion efficiency (PCE) of PSC device has reached 25.5 % in 2021. Hole transporting layer (HTL) used in PSC devices must have high hole extraction efficiency, fast hole transport and the energy level of the frontier orbitals matches with those (valence band (VB) and conduction band (CB)) of the perovskite absorber. Spiro-OMeTAD and P3HT are commonly used HTL materials. In this study, the polymer synthesized by our lab, including P12, P15, P16, P17, P18, P19, P20, and P21, are used as HTL materials for regular PSCs. The hydrophobic properties of polymers film are used to increase the long-term stability of PSC devices. Higher boiling point solvent is used to make the polymer film more ordered, 4-iso-propyl-4'-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate (DPI-TPFB) is used as the dopant, and 2-bromo-5-hexylthiophene (BHT) is used a perovskite/HTL interface passivation agent. P15 film is deposited on the Psk is less aggregated compared to P18 film, which can reduce the recombination of carriers therefore has better photovoltaic performance. The HOMO of DPI-TPFB@P15 is -5.44 eVwhich matches better the VB (-5.61 eV) of perovskite film than those of DPI-TPFB@P3HT and DPI-TPFB@P3HT HTLs. As a result PSC based on DPI-TPFB @P15 HTL has a highest Voc of 1.00 V. The power conversion efficiencies (PCEs) of the PSC based on DPI-TPFB@P15, DPI-TPFB@P18, and DPI-TPFB@P3HT HTLs are 17.08%, 11.75, and 11.63%, respectively. The PCE of the cell based on BHT/DPI-TPFB@P15, BHT/DPI-TPFB@P18, and BHT/DPI-TPFB@P3HT HTLs increase to devices are 18.17%, 15.03%, and 14.79%, respectively. The cell based on BHT/DPI-TPFB@P15 HTL also has the smallest hysteresis index of 6.7% compare to those (9.1% and 14.0%) of the other two cells.
[1] https://www.researchgate.net/figure/Perovskite-generic-crystal-structure-The-cubic-crystal-structure-of-3D-perovskite_fig3_ 325218134
[2] Gwisu Kim, Hanul Min, Kyoung Su Lee, Do Yoon Lee, So Me Yoon, Sang Il Seok, “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells”, Science, 2020, 370, 108-112.
[3] Xiaopeng Zheng, Yi Hou, Chunxiong Bao, Jun Yin , Fanglong Yuan, Ziru Huang , Kepeng Song, Jiakai Liu, Joel Troughton, Nicola Gasparini , Chun Zhou, Yuanbao Lin, Ding-Jiang Xue, Bin Chen, Andrew K. Johnston , Nini Wei, Mohamed Nejib Hedhili, Mingyang Wei , Abdullah Y. Alsalloum , Partha Maity , Bekir Turedi , Chen Yang, Derya Baran , Thomas D. Anthopoulos, Yu Han, Zheng-Hong Lu, Omar F. Mohammed, Feng Gao, Edward H. Sargent and Osman M. Bakr, “Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells”, Nature Energy, 2020, 5, 131-140.
[4] Mriganka Singh, Chien-Hung Chiang, Karunakara Moorthy Boopathi, Chintam Hanmandlu, Gang Li, Chun-Guey Wu, Hong-Cheu Lin, and Chih-Wei Chu, “A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules”, J. Mater. Chem. A, 2018, 6, 7114-7122.
[5] Mr Qingshun Dong, Yantao Shi, Kai Wang, Yu Li, Shufeng Wang, Hong Zhang, Yujin Xing, Yi Du, Xiaogong Bai, and Tingli Ma, “Insight into Perovskite Solar Cells Based on SnO2 Compact ElectronSelective Layer”, J. Phys. Chem. C., 2015, 119, 10212-10217.
[6] Yu Hou, Xiao Chen, Shuang Yang, Chunzhong Li, Huijun Zhao, and Hua Gui Yang, “A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells”, Adv. Funct. Mater., 2017, 1700878.
[7] Chien-Hung Chiang, Chun-Wei Kan, and Chun-Guey Wu, ” Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2021, 13, 23606-23615.
[8] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522.
[9] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051.
[10] Chien-Hung Chiang, Jun-Wei Lin, and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[11] Jun‐Yuan Jeng, Yi‐Fang Chiang, Mu‐Huan Lee, Shin‐Rung Peng, Tzung‐Fang Guo, Peter Chen, and Ten‐Chin Wen, “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater., 2013, 25, 3727-3732.
[12] Chien-Hung Chiang, Jun-Wei Lin, and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[13] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, and Michael Grätzel, “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316-319.
[14] Chien-Hung Chiang, Zong-Liang Tseng, and Chun-Guey Wu, “Planar hetero-junction perovskite/PC71BM solar cells with efficiency over 16% via (2/1)-step spin-coating process”, J. Mater. Chem. A, 2014, 2, 15897-15903.
[15] Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Grätzelc, and Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[16] Inhwa Lee, Jae Hoon Yun, Hae Jung Son, and Taek-Soo Kim, “Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2017, 9(8), 7029-7035.
[17] Wei Chen, Yongzhen Wu, Youfeng Yue, Jian Liu, Wenjun Zhang, Xudong Yang, Han Chen, Enbing Bi, Islam Ashraful, Michael Grätzel, Liyuan Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers”, Science, 2015, 350(6263), 944-948.
[18] Senyun Ye, Weihai Sun, Yunlong Li, Weibo Yan, Haitao Peng, Zuqiang Bian, Zhiwei Liu and Chunhui Huang, “CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%”, Nano Lett, 2015, 15, 6, 3723–3728.
[19] Jeffrey A. Christians, Raymond C. M. Fung and Prashant V. Kamat, “An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide”, J. Am. Chem. Soc, 2014, 136, 2, 758–764..
[20] Agnese Abrusci, Samuel D. Stranks, Pablo Docampo, Hin-Lap Yip, Alex K.-Y. Jen, and Henry J. Snaith, “High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers”, Nano Lett. 2013, 13, 3124−3128.
[21] Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin, Michael Gratzel and Sang Il Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors”, Nature Photonics, 2013, 7, 486-491.
[22] Wenxiao Zhang, Li Wan, Xiaodong Li, Yulei Wu, Sheng Fu and Junfeng Fang, “A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells”, J. Mater. Chem. A, 2019, 7, 18898-18905.
[23] Xiangyu Kong , Yue Jiang , Xiayan Wu, Cong Chen, Jiali Guo, Shengjian Liu, Xingsen Gao, Guofu Zhou, Jun-Ming Liu, Krzysztof Kempa and Jinwei Gao, “Dopant-Free F-substituted Benzodithiophene Copolymer Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells”. J. Mater. Chem. A, 2020, 8, 1858-1864.
[24] Peng Zhou, Tongle Bu, Shengwei Shi, Lingfeng Li, Yulong Zhang, Zhiliang Ku, Yong Peng, Jie Zhong, Yi-Bing Cheng and Fuzhi Huang, “Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer”, J. Mater. Chem. C, 2018, 6, 5733-5737.
[25] C. J. Brabec, A. Cravino, D. Meissner et al., "Origin of the open circuit voltage of plastic solar cells", Adv. Funct. Mater., 2001, 11(5), 374-380.
[26] Jui-Fen Chang, Baoquan Sun, Dag W. Breiby, Martin M. Nielsen, Theis I. So¨lling, Mark Giles, Iain McCulloch, and Henning Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater. 2004, 16, 4772-4776.
[27] Berthold Wegner, Dominique Lungwitz, Ahmed E. Mansour, Claudia E. Tait, Naoki Tanaka, Tianshu Zhai, Steffen Duhm, Michael Forster, Jan Behrends, Yoshiaki Shoji, Andreas Opitz, Ullrich Scherf, Emil J. W. List-Kratochvil, Takanori Fukushima, and Norbert Koch, “An Organic Borate Salt with Superior p-Doping Capability for Organic Semiconductors”, Adv. Sci. 2020, 7, 2001322-2001336.
[28] Shuang Yang, Yun Wang, Porun Liu, Yi-Bing Cheng, Hui Jun Zhao, and Hua Gui Yang, “Functionalization of perovskite thin films with moisture-tolerant molecules”, Nature energy, 2016, 1, 11867-11876.
[29] Tian Yu Wen, Shuang Yang, Peng Fei Liu, Li Juan Tang, Hong Wei Qiao, Xiao Chen, Xiao Hua Yang, Yu Hou, and Hua Gui Yang, “Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics”, Adv. Energy Mater. 2018, 8, 1703143-1703150.
[30] Albertus A. Sutanto, Pietro Caprioglio, Nikita Drigo, Yvonne J. Hofstetter, Ines Garcia-Benito, Valentin I.E. Queloz,1 Dieter Neher, Mohammad Khaja Nazeeruddin, Martin Stolterfoht, Yana Vaynzof and Giulia Grancini, “2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells”, Chem., 2021, 7, 1903-1916.
[31] Eui Hyuk Jung, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae Joo Shin, Tae-Youl Yang, Jun Hong Noh and angwon Seo, “Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)”, Nature, 2018, 567, 511–515.
[32] Wei Luo, Cuncun Wu, Duo Wang, Yuqing Zhang, Zehao Zhang, Xin Qi, Ning Zhu, Xuan Guo, Bo Qu, Lixin Xiao, and Zhijian Chen, “Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification”, ACS Appl. Mater. Interfaces, 2019, 11, 9149-9155.
[33] Shuo Wang, Yu Zhu, Chengyan Wang and Ruixin Ma, “Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells”, J. Mater. Chem. A, 2019, 7, 11867–11876.
[34] Hao Zhang, Yongzhen Wu, Chao Shen, Erpeng Li, Chenxu Yan, Weiwei Zhang, He Tian, Liyuan Han, and Wei-Hong Zhu, “Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring”, Adv. Energy Mater., 2019, 1803573-1803584.
[35] Kyung Taek Cho, Yi Zhang, Simonetta Orlandi, Marco Cavazzini, Iwan Zimmermann, Andreas Lesch, Nouar Tabet, Gianluca Pozzi, Giulia Grancini, and Mohammad Khaja Nazeeruddin, “Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells”, Nano Lett., 2018, 18, 5467−5474.
[36] Feng Wang, Wei Geng, Yang Zhou, Hong-Hua Fang, Chuan-Jia Tong, Maria Antonietta Loi, Li-Min Liu, and Ni Zhao, “Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells”, Adv. Energy Mater., 2016, 1803573-1803584.
[37] Qingquan He, Michael Worku, Liangjin Xu, Chenkun Zhou, Haoran Lin, Alex J. Robb, Kenneth Hanson, Yan Xin, and Biwu Ma, “Facile Formation of 2D−3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells”, ACS Appl. Mater. Interfaces, 2020, 12, 1159-1168.
[38] Shenghe Zhao, Jiangsheng Xie, Guanghui Cheng, Yuren Xiang, Houyu Zhu, Wenyue Guo, Han Wang, Minchao Qin, Xinhui Lu, Junle Qu, Jiannong Wang, Jianbin Xu, and Keyou Yan, “General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability”, Small, 2018, 1803350-1803360.
[39] Yanping Lv, Xuedan Song, Yanfeng Yin, Yulin Feng, Hongru Ma, Ce Hao, Shengye Jin, and Yantao Shi, “Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2020, 12, 698-705.
[40] Shenghe Zhao, Minchao Qin, Han Wang, Jiangsheng Xie, Fangyan Xie, Jian Chen, Xinhui Lu, Keyou Yan and Jianbin Xu, “Cascade Type-II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency”, Sol. RRL., 2020, 2000282-2000290.
[41] Matheus S. de Holanda, Rodrigo Szostak, Paulo E. Marchezi, Luís G. T. A. Duarte, José C. Germino, Teresa D. Z. Atvars, and Ana F. Nogueira, “In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells”, Sol. RRL. 2019, 1900199-1900208.
[42] Qi Jiang, Yang Zhao, Xingwang Zhang , Xiaolei Yang, Yong Chen, Zema Chu, Qiufeng Ye, Xingxing Li, Zhigang Yin and Jingbi You, “Surface passivation of perovskite film for efficient solar cells”, Nature Photonics, 2019, 13, 460-466.
[43] Jingjing Xue, Rui Wang, Xihan Chen, Canglang Yao, Xiaoyun Jin, Kai-Li Wang, Wenchao Huang, Tianyi Huang, Yepin Zhao, Yaxin Zhai, Dong Meng, Shaun Tan, Ruzhang Liu, Zhao-Kui Wang, Chenhui Zhu, Kai Zhu, Matthew C. Beard, Yanfa Yan, Yang Yang, “Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations”, Science, 2021, 371, 636–640.
[44] Jinbiao Jia, Jia Dong, Beibei Shi, Jihuai Wu, Yangqing Wu, and Bingqiang Cao, “Postpassivation of Cs0.05(FA0.83MA0.17)0.95Pb (I0.83Br0.17)3 Perovskite Films with Tris(pentafluorophenyl)borane”, ACS Appl. Mater. Interfaces, 2021, 13, 2472-2482.
[45] Jason J. Yoo, Sarah Wieghold, Melany C. Sponseller, Matthew R. Chua, Sophie N. Bertram, Noor Titan Putri Hartono, Jason S. Tresback, Eric C. Hansen, Juan-Pablo Correa-Baena, Vladimir Bulovic´, Tonio Buonassisi, Seong Sik Shin and Moungi G. Bawendi, “An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss”, ACS Appl. Mater. Interfaces, Energy Environ. Sci., 2019, 12, 2192-2199.