| 研究生: |
孫晧竣 Hao-Chun Sun |
|---|---|
| 論文名稱: |
在無線感測網路中以資料為主之動態資料儲存與繞徑技術 Dynamic Data-Centric Routing and Storage Mechanisms for Wireless Sensor Networks |
| 指導教授: |
許健平
Jang-Ping Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 無線感測網路 、資料集中儲存 、資料散播 |
| 外文關鍵詞: | Data-centric storage, wireless sensor networks, data dissemination |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線感測網路具有低頻寬、有限電量、大量分散佈點等特性。當sink node 欲收集符合特定條件的感測器(sensor nodes)資料時,為避免在整個無線感測網路中進行泛流(flooding),研究[2]提出Data-Centric Storage Architecture,當感測器感測到符合特定條件的資料時,便以雜湊(hashing)的方式計算出此資料儲存的感測器位置,而sink node亦可以雜湊(hashing)的方式計算出符合特定條件的感測器位置。然而,data-centric node在無線感測網路中所處的位置將會影響sink node對其查詢資料及感測資料在傳遞時所花費的成本,尤其是在多個sink node 的環境中,data-centric node 位置之選擇對通訊成本的影響更甚。本論文提出一個Dynamic Data-Centric Routing and Storage Mechanism (DDCRS)來決定data-centric node位置及解決sink node查詢及資料儲存時的通訊問題。我們發展的協定將根據sink node欲收集資料的頻率以及sink與data-centric node的位置關係來動態決定最佳的data-centric node,並且從data-centric node到多個sink之間自動建立共享的資料回傳路徑。另外,對於新的Sink 之查詢或回傳資料頻率的改變,我們也會動態的調整data-centric node的位置,以達到最好的省電效果。實驗數據顯示我們所開發的協定能有效地節省電量的消耗,並平衡整個網路的電量。
Wireless Sensor Networks (WSNs) are characterized by low bandwidth, limited energy, and largely distributed deployment. The authors in [2] proposed a data-centric storage architecture to temporarily store the event data to reduce the flooding overhead raised by transmitting query and data information. However, the locations of data-centric nodes significantly impact the power consumption and efficiency for data query and store, especially in a multi-sink environment. This thesis proposes a novel dissemination approach, namely Dynamic Data-Centric Routing and Storage Mechanism (DDCRS), to determine locations of data-centric nodes dynamically according to sinks’ location and data collecting rate and automatically construct shared paths from data-centric node to multiple sinks for data collection. To save the power consumption, the data-centric node will be changed as there are new sink nodes participated in the WSNs or some queries change frequencies. The simulation results reveal that the proposed protocol outperforms the existing protocols in power conservation and power balancing.
[1] B. Karp and H. T. Kung, ”GPSR:Greedy Perimeter Stateless Routing for Wireless Networks,” in Proceedings of International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 243-254, Boston, Massachusetts, August 2000.
[2] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “Data-Centric Storage in Sensornets with GHT, a Geographic Hash Table,”Journal on Mobile Networks and Applications, Vol. 8, No. 4, pp. 427-442, August 2003.
[3] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “GHT: A Geographic Hash Table for Data-Centric Storage,” in Proceedings of international workshop on Wireless Sensor Networks and Applications (WSNA 2002), pp. 78-87, Atlanta ,Georgia, USA, September 2002.
[4] J. Newsome, D. Song, “GEM: Graph Embedding for Routing and Data-Centric Storage in Sensor Networks Without Geographic Information,” in Proceedings of international conference on Embedded Networked Sensor Systems (SenSys 2003), pp. 76-88, Los Angeles, California, November 2003.
[5] K. Seada, A. Helmy, “Rendezvous Regions: A Scalable Architecture for Service Location and Data-Centric Storage in Large-Scale Wireless Networks,” in Proceedings on Parallels and Distributed Processing Symposium (IPDPS 2004), pp. 218-225, Santa Fe, New Mexico, April 2004.
[6] US Naval Observatory (USNO) GPS Operations. http://tycho.usno.navy.mil/gps.html, April 2001.
[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications,” in Proceedings of ACM SIGCOMM, August 2001.
[8] A. Rowstron and P. Druschel, “Pastry: Scalable, “Distributed Object Location and Routing for Large-scale Peer-to-peer Systmes,” Journal of Lecture Notes in Computer Science, Vol. 2218, pp. 329, August 2001.
[9] Technical Report UCB/CSD-01-1141 B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An Infrastructure for Faul-tolerant Wide-area Location and Routing,” Computer Science Division, University of California at Berkeley, Berkeley, California 94720, April 2001.
[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-Addressable Network,” in ACM SIGCOMM Computer Commnication Review, Proceedings of Internationa Conference on Applications, technologies, architectures, and protocols for computer communications, Vol. 31, No 4, pp. 161-172, San Diego, California, August 2001.
[11] W. Zhang, G. Cao, and T. L. Porta, “Data Dissemination with Ring-Based Index for Wireless Sensor Networks,” in Proceedings of International Conference on Network Protocols (ICNP 2003), pp. 305, Anlanta, Georgia, USA, November 2003.
[12] T. He, C. Huang, B. M. Blum, J. A. Stankovic, T. Adbelzaher, “Range-Free Localization Schemes for Large Scale Sensor Networks” in Proceedings of International Conference on Mobile Computing and Networking (MobiCom 2003), pp. 81-95, San Diego, California, USA, September 2003.
[13] N. Bulusu, J. Heidemann, D. Estrin, “GPS-less Low Cost Outdoor Location for Very Small Devices,” in IEEE Personal Communications Magazine, Special Issue on “Smart Space and Environments”, Vol. 7, No 5, pp. 28-34, October 2000.
[14] L. Bajaj, M.Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla, “GloMoSim: A Scalable Network Simulation Environment” Technical Report 990027, UCLA Comupter Science Department, May 1999.
[15] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu, "The Broadcast Storm Problem in a Mobile Ad Hoc Network," the Special Issue of ACM/Kluwer Wireless Networks, Vol. 8, No. 2, pp. 153-167, March 2002.
[16] S. Y. Wang, Y. C. Tseng, C. S. Shiu, and J. P. Sheu, "Balancing Traffic Load for Multi-Node Multicast in a Wormhole 2D Torus/Mesh," The Computer Journal, Vol. 44, No. 5, pp.354-367, 2001.