跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姚宇謙
Yu-Chien Yao
論文名稱: 複數型模糊類神經系統及連續型態之多蟻群演化在時間序列預測之研究
Complex Neuro-Fuzzy System with Multi-Group Continuous Ant Colony Optimization for Time Series Forecasting
指導教授: 李俊賢
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 特徵選取複數模糊集複數模糊類神經系統蟻群演算法遞迴最小平方演算法多目標預測
外文關鍵詞: Feature selection, Complex fuzzy set, Complex neuro-fuzzy system, Ant colony optimization, RLSE, Multi-target forecasting
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資料的快速增加,如何有效分析隱藏在大量資料中的價值日益重要。在資料分析的領域中,時間序列的分析與預測是一主要的研究方向。本研究提出一個複數模糊類神經模型(Complex neuro-fuzzy model),其結合複數模糊集(Complex fuzzy set)、T-S模糊系統(T-S fuzzy system)形成該模型。在參數學習,以多群連續型蟻群演算法(Multi-group continuous ant colony optimization, MGCACO)與遞迴最小平方演算法(Recursive least squares estimator, RLSE)結合,成為MGCACO-RLSE複合型演算法,進行參數的搜尋與最佳化。多群連續型蟻群演算法在演化過程中,加入資料流通、淘汰、繼承等特性,能夠減少演算法落入區域最佳解以及加速進行參數的最佳化。在資料進入模型前,利用特徵選取(Feature selection)的方式,擷取其中較為有影響力的資料進行預測,減少模型負擔。此外,模型的歸屬程度(Membership degree)是複數型態,並且能拆解成多個不同的歸屬程度,使模型達到預測多目標的效果。本研究以三個實驗來驗證模型的效能與研究理論。實驗一的單目標證實本研究的理論,實驗二與實驗三的多目標實驗,個別證明模型的複數形態輸出以及利用多個歸屬程度達到的多目標輸出方法。個別實驗結果皆與過往文獻比較,實驗顯示本研究模型在時間序列預測上有良好效能,更加證實本研究的可行性。


    In the age of information, it is increasingly important to deal with big data effectively for both scientific researches and applications of data science. In this study, we have proposed a complex neuro-fuzzy system to data prediction, using complex fuzzy sets and logic and T-S neural fuzzy modeling. Complex fuzzy set is an advance fuzzy set whose membership degrees are complex-valued and defined with the unit disc of the complex plane, in contrast to regular fuzzy set whose membership degrees are real-valued and defined within [0,1]. For model construction, we have used feature selection to get influential data for the proposed model. For the optimization of the proposed model, we have developed a hybrid method for machine learning, denoted as MGCACO-RLSE, integrating the proposed multi-group continuous ant colony optimization (MGCACO) and the well-known recursive least squares estimator (RLSE) method. The MGCACO-RLSE has been applied to optimize the parameters of the proposed model. For MGCACO, we have added some properties, such as data exchange, elimination, and inheritance to increase its search efficacy, in the sense of reducing the possibility of being trapped at a local optimum and thus increasing the chance of finding the optimization solution. In this study, we have conducted three experiments to verify the effectiveness and rationale of the proposed approach. In experiment one, the proposed approach was tested for data prediction with single target to see the feasibility of the research thought. In experiments two and three, the proposed approach was tested for multi-target prediction. With the experimental results, the proposed approach has shown good performance, through performance comparison to other methods in literature.

    中文摘要 i 應文摘要 ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究方法概述 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 特徵選取 6 2.1.1 過濾法 7 2.1.1 打包法 7 2.1.1 嵌入法 8 2.1.2 夏農資訊熵 9 2.2 複數模糊集合 9 2.2.1. 模糊集合緣起 9 2.2.2. 模糊集合 11 2.2.3. 複數模糊集 11 2.3 類神經模型 12 2.4 蟻群演算法 13 2.4.1 連續型蟻群演算法 16 2.5 多群演算法 19 第三章 系統設計與架構 21 3.1 特徵選取 21 3.1.1 單目標特徵選取策略 27 3.1.2 多目標特徵選取策略 28 3.2 複數模糊類神經模型 30 3.3 多群連續型蟻群演算法 34 3.3.1 資訊流通 34 3.3.2 淘汰 35 3.3.3 繼承 36 3.4 遞迴式最小平方演算法 38 3.5 MGCACO-RLSE複合演算法 40 第四章 實驗 44 4.1 實驗一:道瓊工業指數時間序列預測 44 4.2 實驗二:高盛與微軟股價資料預測 51 4.3 實驗三:巴西股市指數、日經指數、道瓊工業指數時間序列預測 60 第五章 討論 74 5.1 利用複數類神經網路模型針對單目標資料進行預測 75 5.2 利用複數型態輸出針對雙目標進行預測 75 5.3 解構歸屬程度值進行多目標預測 76 5.4 特徵選取之應用 76 5.5 MGCACO-RLSE複合式演算法效能分析 77 第六章 結論與未來研究方向 78 6.1 結論 78 6.2 未來研究方向 79 參考文獻 81

    [ 1] R.F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, vol. 50, iss. 4, pp. 987-1007, July 1982
    [ 2] T. Bollerslev, ” Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, vol.31, iss. 3, pp. 307-27, April 1986
    [ 3] T. Kimoto and K. Asakawa and M. Yoda and M. Takeoka,” Stock market prediction system with modular neural networks,” in Proc. International Joint Conference on Neural Networks, San Diego, CA, USA, 1990
    [ 4] K. Kim and I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for prediction of stock index,” Expert System with Applications, vol. 19, iss. 2, pp. 125–132, August 2000
    [ 5] T.H. Roh, “Forecasting the volatility of stock price index,” Expert Systems with Applications, vol.33, iss.4, pp. 916–922, November 2007
    [ 6] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in Proc. IEEE International Conferencnce on Neural Networks (Perth, Australia), vol. 4, pp. 1942-1948, 1995
    [ 7] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. IEEE International Symposium on Micro Machine and Human Science (Nagoya, Japan), pp. 39-43, October 1995
    [ 8] A. Colorni and M. Dorigo and V. Maniezzo, “Distributed optimization by ant colonies,” in Proc. of the 1st European Conference on Artificial Life, pp. 134-142, Paris, 1991
    [ 9] C.Juang and T.Jeng and Y.Chang, “An Interpretable Fuzzy System Learned Through Online Rule Generation and Multiobjective ACO With a Mobile Robot Control Application,” IEEE Transactions on Cybernetics, vol. 46, iss. 12, pp.2706-2718, December 2016
    [ 10 ] H.J. Sadaei and R. Enayatifar and M.H. Lee and M. Mahmud “A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock price forecasting,” Applied Soft Computing, vol.40, pp. 132-149, March 2016
    [ 11 ] C.E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, 1949
    [ 12] D. Ramot and R. Milo and M.Friedman and A. Kandel , “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, iss. 2, pp. 171-186, April 2002
    [ 13 ] P. Domingos ,” A few useful things to know about machine learning,” Communications of the ACM, vol.55, iss. 10, pp.78-87, October 2012
    [ 14] M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis, vol.1, iss. 1-4, pp. 131-156, 1997
    [ 15] L. Yu and H. Liu, “Efficient Feature Selection via Analysis of Relevance and Redundancy,” The Journal of Machine Learning Research, vol. 5, pp. 1205-1224, 1 October 2004
    [ 16] K. Kira and L.Rendell, “ A practical approach to feature selection,” in Proc. of the Ninth International Conference on Machine Learning, Aberdeen, Scotland, UK, pp. 249–256, 1992
    [ 17] M.A. Hall, “Correlation-based Feature Selection for Machine Learning,” Ph.D. dissertation, University of Waikato, Hamilton, New Zealand, 1999
    [ 18] H. Yu and J. Oh and W.-S. Han, “Efficient feature weighting methods for ranking,” in Proc. of the 18th ACM Conference on Information and Knowledge Management Hong Kong, China, pp. 1157-1166, 2009
    [ 19] Z. Sun and T. Qin and Q. Tao and J. Wang, ”Robust sparse rank learning for non-smooth ranking measures,” in Proc. of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009) 20 Boston, MA, pp. 259-266, 2009
    [ 20] R.Clausius, " Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie," Annalen der Physik und Chemie, vol.93, issue.12, pp. 481–506, 1854
    [ 21] G. Cantor, “Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen,” Journal für die reine und angewandte Mathematik, no. 77, pp. 258-262, 1874
    [ 22] B. Russell, “Vagueness,” Australasian Journal of Philosophy, vol.1, iss. 2, pp.84 – 92, 1923
    [ 23] L.A. Zadeh, ”Fuzzy sets,” Information and Control, vol.8, iss.3, pp.338-353, June 1965
    [ 24] C. Li and T. Chiang, “Complex Neurofuzzy ARIMA Forecasting—A New Approach Using Complex Fuzzy Sets,” IEEE Transactions on Fuzzy Systems, vol. 21, iss. 3, pp. 567-584, June 2013
    [ 25] F. Rosenblatt, “The Perceptron: A Probabilistic Model For Information Storage And Organization in the Brain,” Psychological Review, vol.65, no.6, pp. 386–408, December 1958
    [ 26] D.E. Rumelhart and J. L. McClelland,” Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations”, January 1986
    [ 27] J.H. Holland, “Adaptation in Natural and Artificial Systems,” Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press Cambridge, MA, USA
    [ 28] K. Socha and M. Dorigo,” Ant colony optimization for continuous domains,” European Journal of Operational Research, vol.185, iss. 3, pp. 1155–1173, 16 March 2008
    [ 29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst. Man Cybern, vol.15, pp. 116–132, 1985
    [ 30] P. Husbands and F. Mill, “Simulated Co-Evolution as the Mechanism for Emergent Planning and Scheduling,” in Proc. of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, pp. 264-270, January 1991
    [ 31] F. van den Bergh and A.P. Engelbrecht, “A Cooperative approach to particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol.8 , iss.3, pp.225-239, June 2004
    [ 32] J.J. Wang and J.Z. Wang and Z.G. Zhang and S.P. Guo, “Stock index forecasting based on a hybrid model,” Omega, vol. 40, iss. 6, pp. 758-766, December 2012
    [ 33] JL Ticknor, “A Bayesian regularized artificial neural network for stock market forecasting, ” Expert Systems with Applications, vol. 44, iss. 14, pp. 5501-5506, 15 October 2013
    [ 34] L.J. Kao and C.C. Chiu and C.J. Lu and C.H. Chang, “A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting ,” Decision Support Systems, vol. 54, iss. 3, pp. 1228-1244, February 2013
    [ 35] 國立中央大學資訊管理所李俊賢教授, 研究生訓練課程內容2015-2017, 紀錄筆記。 (未發表)

    QR CODE
    :::