跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾培凱
Pei-kai Tseng
論文名稱: 5Gbps 3 倍超取樣眼圖追蹤式時脈資料回復電路
5Gbps 3X Over-Sampling Eye-Tracking Clock And Data Recovery Circuit
指導教授: 鄭國興
Kuo-Hsing Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 超取樣眼圖追踨時脈資料回復電路
外文關鍵詞: over-sampling, eye-tracking, clock and data recovery
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步及運算處理速度的提升,傳送接收系統應用在高速上是未來的趨勢,例如應用在乙太網路及光纖網路上規格,如10G Base- LX4、OC-192、OC-768…等。著重在有線或是匯流排上的應用有PCI-EXPRESS、USB2.0、IEEE1394、SERIAL-ATA…等系統,在此系統當中所傳送的資料速度多為Gb/s的等級。高速資料傳送上,有更多的困難需要克服。如雜訊的處理,時脈產生器如何產生高速時脈…等等的問題。本論文採用三倍超取樣眼圖追鎖的技術應用在接收端的時脈資料回復電路上,並以應用PCI-Express II的規格為目標。
    本論文是應用在5Gb/s的傳送系統的資料接收端的電路上,達到一個高速5Gb/s串列資料。利用鎖相迴路(PLL)作為系統上的時脈產生器,產生5GHz時脈對於輸入的資料作取樣的動作。系統當中需要切割出微小的時脈延遲來調整取樣時脈的相位,採用相位內插的電路利用電流切割方式,切割出6.25ps左右的延遲相位,以達到系統上所規定的頻寬。三倍超取樣的方式可以達到較小的靜態相位誤差,四倍或五倍超取樣的方式複雜度又太大。
    在整體電路實現上,我們採用0.13-um製程,1.2-V的供應電源來實現接收端的電路。


    With the progress in the CMOS process technologies and the operating speed of the processor, high speed links in the transmitter and receiver system are the future tendency . For example, 10Gbase-LX4, OC-192, OC-768 are applied in Gigabit Ethernet and Fiber Channel; PCI-EXPRESS, USB2.0, IEEE1394 and SERIAL-ATA are used in wire or bus serial links. Most of the systems operate at the data rate attending to the level of Gb/s. With the increase of operation frequency, the system design becomes more difficult. These difficulties include noise handling and the generation of the sampling clock at high frequency in receiver side, etc. The thesis adopts 3X over-sampling-eye-tracking techniques in the receiver circuit and tries fit the corresponding specification of PCI- Express II.
    We designed a receiver circuit which is used in the one serial in data with 5Gb/s and retimed them to a serial 5Gb/sdata. PLL circuit is used as the clock generation circuit and the output clock signals of PLL are used to sample the input data. The small phase delay circuit is implemented by phase interpolator delay to make approximate 6.25ps delay and to tune the phase of sampling clock. A small phase delay is required because of the specification of CDR bandwidth. The reason we adopted the 3X over-sampling is that 2X over-sampling system has larger static phase error and circuit in 4X or 5X is too complex.
    The receiver system in the thesis is implemented with a 0.13-um CMOS technology with a 1.2V supply power.

    摘 要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X Chapter 1 1 簡介 1 1.1動機 1 1.2論文架構 2 Chapter 2 3 時脈回復電路的背景 3 2.1簡介 3 2.2串列連接層(serial link )與平行連接層(Parallel link ) 4 2.3 時脈回復電路的架構 5 2.3.1 鎖相迴路式的時脈資料回復電路 6 2.3.1.1 壓控振盪器(VCO)的抖動表現 6 2.3.1.2振盪器的頻率 6 2.3.1.3 有參考時脈及無參考時脈的時脈回復電路 7 2.3.2 超取樣式的時脈資料回復電路 10 2.3.3 相位內插式的時脈資料回復電路 11 Chapter 3 12 抖動分析 12 3.1前言 12 3.2抖動簡介 12 3.3 通道的雜訊來源 14 3.3.1 連接層中的通道的衰減與信號自身的干擾(ISI Inter-Symbol Interference ) 14 3.3.1.1 信號擴散效應 15 3.3.1.2 信號反射效應 15 3.3.2 電壓源的雜訊 16 3.4抖動容忍度(Jitter tolerance) 16 3.5抖動轉移函數(Jitter Transfer Function ) 17 3.6抖動峰值(Jitter Peaking) 18 3.7抖動產生量(Jitter Generation) 18 Chapter 4 19 時脈資料回復電路架構 19 4.1時脈資料回復電路的架構 19 4.1.1時脈資料回復電路的規格 19 4.1.2時脈資料回復電路的架構 20 4.1.2.1傳統式三倍超取樣時脈資料回復電路 20 4.1.2.2改良式三倍超取樣時脈資料回復電路 21 4.2 在時脈資料回復電路的設計 23 4.2.1鎖相迴路的設計 23 4.2.1.1 相位頻率偵測電路(Phase Frequency Detector) 23 4.2.1.2 充電電流泵(Charge pump circuit) 24 4.2.1.3 迴路濾波器(Loop filter) 24 4.2.1.4 電壓控製振盪器(Voltage Control Oscillator) 25 4.2.1.5 除頻器(Divider) 25 4.2.1.6 PLL的線性度分析 25 4.2.2資料回復電路的設計架構 29 4.2.2.1 三倍超取樣的資料回復電路之操作方式 29 4.2.2.2 抖動容忍度頻寬分析 32 4.2.2.3 抖動轉移函數頻寬分析 34 4.2.2.4相位內插電路 35 4.2.2.4.1傳統相位內插電路Ⅰ 35 4.2.2.4.2傳統相位內插電路Ⅰ 36 4.2.2.4.3相位內插電路 37 4.3 三倍超取樣電路時序圖 37 Chapter 5 39 時脈資料回復電路設計 39 5.1設計流程 39 5.2鎖相迴路(PLL Phase Locked Loop) 40 5.2.1 相位頻率偵測器(Phase Frequency Detector ) 40 5.2.2 充電電流泵(Charge Pump ) 42 5.2.3 壓控振盪器(Voltage Control Oscillator ) 43 5.2.4 除頻電路(Divider) 44 5.2.5 電流式邏輯雙端轉單端電路(CML Differential to Single circuit) 47 5.2.6 責任週期位移補償電路(Duty Cycle Deskew) 48 5.3資料回復電路 50 5.3.1 相位比較電路(Phase Comparator) 51 5.3.1.1 決策框架電路 51 5.3.1.2 數位相位偵測器(Bang-Bang! Phase 52 5.3.2 多數投票機制電路 52 5.3.3 相位旋轉電路(Phase Rotate) 55 5.3.6 輸出輸入驅動電路 59 5.3.6.1 資料及時脈輸入驅動電路 59 5.3.6.2 資料及時脈輸出驅動電路 61 5.4資料時脈回復電路 62 5.4.1時脈資料回復電路模擬 62 5.4.2時脈回復電路佈局 66 Chapter 6 68 時脈資料回復電路量測結果 68 6.1 前言 68 6.2 量測環境 68 6.3 5Gbps串列輸入及5Gbps串列輸出時脈回復電路量測結果 69 6.3.1 鎖相迴路量測結果 70 6.3.2 時脈資料回復電路量測結果 73 Chapter 7 78 結論 78 7.1 結論 78 7.2未來電路的改進方向 79 References 80

    [1] John G. Maneatis ”Low Jitter Process-Independent DLL and PLL
    Based on Self-Biased Techniques” IEEE Journal of Solid-State Circuits, vol.31,no.11, pp.1723-1732, Nov. 1996
    [2] Chan-Hong Park and Beomsup Kim ”A Low-Noise, 900-MHz VCO in
    0.6um CMOS” IEEE Journal of Solid-State Circuit, vol.31,no.5,
    pp. 586-591, May 1999
    [3] Takanori Saeki ,and Masafumi Mitsuishi, et al., “A 1.3-cycle Lock
    Time, Non-PLL/DLL Clock Multiplier Based on Direct Clock Cycle
    Interpolation for “Clock On Demand’’ ’’ IEEE Journal of Solid-State
    Circuit, vol.35, no.11,pp.1581-1589, Nov 2000
    [4] Jafar Savoj and Behzad Razavi, “A 10Gb/s CMOS Clock and Data
    Recovery Circuit with a Half-rate Linear Phase Detector ” IEEE
    Journal of Solid-State Circuit, vol.36, no.6,pp.761-761, May 2001
    [5] Andrea Boni and Andrea Pierazza ,et al., “LVDS I/O Interface for
    Gb/s-per-Pin Operation in 0.35um CMOS ”, IEEE Journal of Solid-State Circuit, vol.36, no.4,pp.706-711, April 2001
    [6] William Hhing Tak Yan and Howard Cam Luong, “A 900-MHz CMOS
    Low-Phase-Noise Voltage-Control Ring Oscillator” IEEE Transactions on circuit and systemsⅡ:Analog and Digital Signal Processing,vol.48,no.2
    ,pp.216-221,Feb 2001
    [7] Yongsam Moon ,et al., “A 0.6-2.5GBaud CMOS Tracked 3X
    Over-sampling transceiever with dead-Zone Phase Detection for Robust Clock/Data Recovery’’ ,IEEE Journal of Solid-State Circuit, vol36,no12,pp.1974-1983 Dec 2001
    [8] Sang-Hyun Lee,et al.,”A 5-Gb/s 0.25um CMOS Jitter-Tolerant
    Variable-Interval Oversampling Clock/Data Recovery”, IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp.1804-1812, Nov. 2003
    [9] Seema Butala Anand and Behzad Razavi, “A CMOS Clock Recovery
    Circuit for 2.5-Gb/s NRZ Data,” IEEE Journal of Solid-State Circuits, vol.36, no. 3, pp.432-439, Mar. 2001
    [10] Sang-Hyun Lee, et al., ”A 5Gb/s 0.25-um CMOS Jitter-Tolerant
    Variable-Interval Oversampling Clock/Data Recovery Circuit,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1822-1830, Dec. 2002
    [11] Jri Lee and Behzad Razavi ,et al., “Modeling of Jitter in Bang-Bang
    Clock and Data Recovery circuits” IEEE Custom Integrated Circuit Conference pp.711-714 2003
    [12] Mehrdad Ramezani and C. Andre Salama, et al ., “A 10 Gb/s CDR with a Half-rate Bang-Bang Phase Detector’’ IEEE pp.Ⅱ-181-Ⅱ184 2003
    [13] Youngdon Choi ,et al ., “Jitter Transfer Analysis of Tracked
    Oversampling Technique for Multi-gigabit Clock and Data Recovery’’ IEEE Transactions on circuit and systems-Ⅱ:Analog and Digital Signal Processing, vol.50, no.11, pp.775-782Nov. 2003
    [14] Byeong-Chun So, et al., “A Multi-Gigabit CMOS Serial Link
    Transceiver using Jitter Tolerant Delay Locked Loop’’, IEEE pp.171-174 2003
    [15] Yueming Jiang,and Alessandro Piovaccari “A COMPACT PHASE
    INTERPOLATOR FOR 3.125G SERDES APPLICATION’’IEEE SSMSD pp.249-252 2003
    [16] Yoshio Miki, Tatsuya Saito, et al., “A 50-Mw/ch 2.5-Gb/s/ch Data
    Recovery Circuit for the SFI-5 Interface With Digital Eye-Tracking’’ IEEE Journal of Solid-State Circuits, vol.39, no.4,Apr. pp.613-621 2004
    [17] Payam Heydari ,et al ., “Design of Ultrahigh-speed Low-Voltage
    CMOS CML buffers and latches ’’IEEE transactions on VLSI System,vol.12 ,no.10, pp.0181-1893 Oct. 2004
    [18] Hiroshi Kodama, et al., ”Frequency-Hopping Vernier Clock Generator
    for Multiple Clock Domain SoCs” IEEE Custom Integrated Circuits Conference pp.91-94 2004
    [19] Pedram Sameni ,and Shahriar, ”A 1/8-RATE CLOCK AND DATA
    RECOVERY ARCHITECTURE FOR HIGH-SPEED COMMUNICATIONS SYSTEMS,”IEEE ISCAS PP.ⅠⅤ-305-ⅠⅤ-308 2004
    [20] Rong-Jyi Yang,and Shen-Iuan Liu ,et al., ”A 3.125-Gb/s Clock and
    Data Recovery Circuit for the 10-Gbased-LX4Ethernet,” IEEE Journal of Solid-State Circuits, vol.39, no. 8, pp.1356-1360, Aug 2004
    [21] Rainer Kreienkamp , et al, “A 10-Gb/s CMOS Clock and Data
    Recovery Circuit With an Analog Phase Interpolator” IEEE Journal of Solid-State Circuits, vol.40, no.3, pp.736-739,Mar 2005
    [22] Chih-Chien Hung, et al., “A Sub-1V CMOS 2.5Gb/s Serial Link
    Transceiver Using 2X Oversampling” IEEE 2005
    [23] Thomas Toifl ,et al., “A 0.94-ps-RMS-Jitter 0.016-mm2 2.5GHz Multiphase ‘Generator PLL with 360° Digitally programmable Phase Shift for 10-Gb/s Serial link” ,IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp.2700-2712, Dec. 2005
    [24] S. I. Ahmed, et al., ”OVERVIEW OF OVERSAMPLING CLOCK AND DATA RECOVERY CIRCUITS” IEEE CCECE/CCGE ,Saskatoon , pp.1876-1881
    ,May. 2005
    [25] Ching-Te Chiu, et al., ”A 10Gb/s Wide-Band Current Mode Logic
    I/O Interface for High-speed Interconnect in 0.18um CMOS Technology
    ”IEEE pp.257-260, 2005 IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1974-1983, Dec. 2001
    [26] Declan Dalton, et al., ”A 12.5-Mb/s to 2.7-Gb/s Continuous-Rate CDR
    With Automatic Frequency Acquisition and Data-Rate Readback,” IEEE Journal ofSolid-State Circuits, vol. 40, no. 12, pp. 2713-2725, Dec. 2005
    [27] Rong –jyi Yang, et al., ”A 155.52Mbps-3.125 Gbps continuous-Rate
    Clock and Data Recovery ,” IEEE Journal of Solid-State Circuits ,vol.
    41, no. 6, pp. 1380-1390, Jun. 2006
    [28] Christian , et al., “A 25-Gb/s CDR in 90-nm for High-Density Interconnects”IEEE Journal of Solid-State Circuits ,vol. 41, no. 12, pp. 2921-2929, Jun. 2006
    [29] Yusuke Ohtomo, et al. “A 12.5-Gb/s Parallel Phase Detection Clock
    and Data Recovery Circuit in 0.13-um CMOS,” IEEE Journal of
    Solid-State Circuits, vol. 41, no. 9, pp.2052-2057, Sept. 2006
    [30] Mike Yun He and John Poulton, “A CMOS Mixed-Signal Clock and
    Data Recovery Circuit for OIF-6G+ Backplane Transceiver’’ IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp.597-626, Sept. 2006
    [31] Dongwoo Hong ,et al., “Bit-Error-Rate Estimation for High-Speed
    Serial Links’’ IEEE journal of Solid-State Circuits, vol. 53, no. 12, pp.2616-2627, Dec. 2006

    QR CODE
    :::