| 研究生: |
王國斌 Guo-Bin Wang |
|---|---|
| 論文名稱: |
製備頻率梳狀糾纏光子對與其量子態重建之理論研究 Theoretical Study on the Generation of Frequency-Comb Entangled Photon Pairs and the Reconstruction of Their Quantum States |
| 指導教授: |
陳彥宏
Yen-Hung Chen 蔡秉儒 Pin-Ju Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 231 |
| 中文關鍵詞: | 量子光學 、鈮酸鋰 、HOM 、頻率梳狀態 、密度矩陣 、量子態斷層掃描術 |
| 外文關鍵詞: | Quantum Optics, LiNbO3, Hong-Ou-Mandel, Frequency Comb status, Density Matrix, Quantum state tomography |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子科技為當代新興且迅速發展之領域,隨著技術日益成熟,其潛力與優勢逐漸展現於各項應用中。例如,量子計算中的 Shor 演算法可快速進行質因數分解,量子感測技術則能以高精度干涉儀測量重力波,此外,量子模擬亦可應用於複雜環境之模擬分析。然而,量子技術帶來突破的同時,也對既有系統造成挑戰。尤以通訊安全為例,傳統加密系統面臨量子計算所帶來的潛在解密風險,如何在既有設備下建立兼具安全與效率的新型通訊架構,成為重要課題。
有趣的是,這些因量子科技發展而產生的問題,也可由量子技術本身獲得解方。正如量子計算可能破解傳統加密,但量子通訊的出現,則開啟了無法被竊聽的安全通訊新篇章。透過量子金鑰分配(Quantum Key Distribution, QKD),可實現理論上無法攔截的機密傳輸,進一步提升通訊安全之極限。
本論文研究內容可分為兩大部分。第一部分為藉由控制鋰鈮酸鹽(LiNbO₃, LN)晶體的結構設計,透過參數下轉換(Spontaneous Parametric Down-Conversion, SPDC)產生在頻率域上呈現梳狀分布的糾纏光子對,期望藉此提升通訊中每對光子可承載之資訊量。第二部分則重建量子態之密度矩陣並針對外在環境因子造成之擾動進行模擬與分析,探討其對糾纏光子態的影響程度。
根據模擬結果,我們成功產生預期之頻率梳狀糾纏光子對,同時優化產生效率,並藉由溫度調控改變光子對頻譜位置,進一步進行 Hong-Ou-Mandel(HOM)干涉實驗模擬,重建糾纏態的密度矩陣,最後引入相位擾動進行分析。
Quantum technology is a fast-growing and promising field. As the technology develops, its advantages are becoming more apparent in many areas. For example, Shor’s algorithm in quantum computing can factor large numbers quickly, quantum sensing can detect gravitational waves with high precision, and quantum simulation helps us study complex systems. However, these advances also create new challenges for current systems. One major issue is communication security: classical encryption methods may be broken by quantum computers. So, building new systems that are both secure and practical has become an important goal.
Interestingly, some of these problems can also be solved using quantum technologies. While quantum computers can break traditional encryption, quantum communication opens up new ways to transmit information securely. Quantum Key Distribution (QKD), for instance, allows the sharing of secret keys in a way that cannot be eavesdropped, offering a new level of communication security.
This thesis includes two main parts. The first part focuses on generating entangled photon pairs that form a frequency comb using a specially designed lithium niobate (LiNbO₃) crystal and spontaneous parametric down-conversion (SPDC). This can increase how much information each photon pair can carry. The second part focuses on reconstructing the density matrix of the quantum state and simulating how external disturbances affect it.
Our simulations show that we successfully generated the desired frequency-comb entangled photons and improved the generation efficiency. By adjusting the temperature, we shifted the photons’ spectra and simulated Hong-Ou-Mandel (HOM) interference to reconstruct the quantum state's density matrix. Finally, we studied how phase disturbances affect the coherence and purity of the state.
[1] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
[2] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin
tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014.
[3] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A
complete framework for quantum information science,” Physical Review X , vol. 5, no. 4,
p. 041 017, 2015.
[4] A. K. Ekert, “Quantum cryptography based on bell's theorem,” Physical review letters,
vol. 67, no. 6, p. 661, 1991.
[5] N. Tagliavacche, M. Borghi, G. Guarda, et al., “Frequency-bin entanglement-based quantum
key distribution,” npj Quantum Information, vol. 11, no. 1, p. 60, 2025.
[6] K.-C. Chang, X. Cheng, M. C. Sarihan, and C. W. Wong, “Recent advances in highdimensional
quantum frequency combs,” arXiv preprint arXiv:2502.08879, 2025.
[7] P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, et al., “50-ghz-spaced comb of highdimensional
frequency-bin entangled photons from an on-chip silicon nitride microresonator,”
Optics express, vol. 26, no. 2, pp. 1825–1840, 2018.
[8] C. L. Morrison, F. Graffitti, P. Barrow, A. Pickston, J. Ho, and A. Fedrizzi, “Frequencybin
entanglement from domain-engineered down-conversion,” APL Photonics, vol. 7,
no. 6, p. 066 102, Jun. 2022, ISSN: 2378-0967. DOI: 10.1063/5.0089313.
[9] Y. Chen, S. Ecker, J. Bavaresco, et al., “Verification of high-dimensional entanglement
generated in quantum interference,” Physical Review A, vol. 101, no. 3, p. 032 302, 2020.
[10] R. W. Boyd, Nonlinear optics, 4th ed. San Diego: Academic Press is an imprint of Elsevier,
2019, ISBN: 9780128110027.
[11] C. C. Gerry and P. Knight, Introductory quantum optics, eng. Cambridge, UK New York:
Cambridge University Press, 2005, ISBN: 9780511791239, 9780511648373.
[12] F. A. Laudenbach, Engineering spectrally pure quantum states with spdc using periodically
poled crystals and pulsed laser sources, 2015.
[13] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between
light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918–1939, 6 Sep. 1962.
DOI: 10.1103/PhysRev.127.1918.
[14] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce,
“Quasi-phase-matched optical parametric oscillators in bulk periodically poled linbo3,”
J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2102–2116, Nov. 1995. DOI: 10.1364/JOSAB.12.
002102.
[15] J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial
crystal symmetry on the polar distribution of second-order non-linear optical polarization,”
British Journal of Applied Physics, vol. 16, no. 8, p. 1135, Aug. 1965. DOI:
10.1088/0508-3443/16/8/312.
[16] J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering
algorithm for practical and effective photon sources,” Opt. Express, vol. 24, no. 17,
pp. 19 616–19 626, Aug. 2016. DOI: 10.1364/OE.24.019616.