| 研究生: |
范文銓 FAN,WEN-CHUAN |
|---|---|
| 論文名稱: |
具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析 Design and Characteristics of InGaAs/InAlAs Single-Photon Avalanche Diodes with Distributed |
| 指導教授: | 李依珊 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 崩潰二極體 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單光子崩潰二極體廣泛應用於醫療電子、光纖通訊、自動駕駛系統等,以往主要以砷化銦鎵為吸收層、磷化銦作為累增層的材料。然而以砷化銦鋁作為累增層有較高的崩潰機率,可預期能有較高的光偵測效率,此外砷化銦鋁對溫度較不靈敏,因此可操作溫度比較彈性。另外為了進一步提升光偵測效率,在N contact layer下方加入分布式布拉格反射器,利用分布式布拉格反射器特性將原來往下的光反射回來,提高光子停留在元件內的時間,使光子被吸收機率大幅提升,進而改善光偵測效率。故本研究以砷化銦鋁作為放大層且附加上分布式布拉格反射器結構進行探討。
元件製程採用平台式蝕刻定義元件有效偵測尺寸,於裸露的側壁上進行硫化處理並包覆保護層以降低元件的漏電流,再將元件的陰陽極蒸鍍金屬,接著打線至電路板上以利後續的量測。透過改變過量偏壓、操作頻率與溫度來分析單光子崩潰二極體的最佳偵測環境。
在室溫下的崩潰電壓為32.7 伏特,溫度係數為10 mV/K;在脈衝寬度為5 ns、溫度187.5 K、過量偏壓4.0 %的操作條件下,單光子偵測效率可達到1.7 %,暗計數率為9.6 %;利用照光雙脈衝法所量測出的二次崩潰機率在20k Hz操作下低於1 %;時基誤差在過量偏壓5.5 %時為59ps。
Single-photon avalanche diode (SPAD) is widely used in medical electronics, optical fiber communication, automatic driving systems, etc. In the past, InGaAs was mainly used as the absorption layer and InP was used as the multiplication layer material. However, using InAlAs as a multiplication layer has a higher avalanche probability, and it is expected to have a higher photon detection efficiency. In addition, InAlAs is less sensitive to temperature, so the operating temperature is more flexible; Furthermore, in order to further improve the photon detection efficiency, we incorporate a distributed Bragg reflector at the bottom of the N contact layer, and the high reflection of the distributed Bragg reflector is applied to prolong the stay of the incident photon in the device, so that the absorption probability can be improved, thereby improving the photon detection efficiency. Therefore, this study adopts InAlAs as multiplication layer and incorporates the distributed Bragg reflector structure for further investigation.
The device was processed into mesa type, which relies on the etching to define the active detection size of the device. Sulfur treatment is performed on the exposed side wall and following a passivation layer is applied to reduce the leakage current of the device. The last we deposited the cathode and anode of the device. The chip was wire bonded to the circuit board to perform the subsequent measurements. By operating the SPAD under different excess bias voltage, operating frequency and temperature, we can comprehensively characterize the SPAD and thoroughly study the physics behind.
The breakdown voltage of the device at room temperature is 32.7 volts, the temperature coefficient is 10 mV/K; Under the operating conditions of pulse width of 5 ns, temperature of 187.5 K, and excessive bias of 4.0 %, the single photon detection efficiency reaches 1.7%, dark count probability was 9.6%. By using the illuminated double-gate method, the probability of afterpulsing is less than 1 % under the repetition rate of 20 kHz. The timing jitter is reduced to 59ps when the excessive bias increases to 5.5%.
[1] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice-Hall, 2001
[2] K. Nishida, K. Taguchi, and Y. Matsumoto. "InGaAsP heterostructure avalanche photodiodes with high avalanche gain." Appl. Phys. Lett. vol. 35, pp. 251-253, 1979.
[3] J. P. R. David and C. H. Tan, "Material Considerations for Avalanche Photodiodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 4, pp. 998-1009, July-aug. 2008.
[4] 張世承,「砷化銦鎵/砷化鋁銦單光子崩潰二極體的設計與特性探討」,國立中央大學,碩士論文,民國107年
[5] S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka. "Lucky drift impact ionization in amorphous semiconductors." J. Appl. Phys. vol. 96, pp.2037-2048, 2004.
[6] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[7] L . Pavesi and F. Piazza. "Temperature dependence of the InP band gap from a photoluminescence study." Physical Review B, vol. 44, No. 16, pp.9052-9055, Oct. 1991.
[8] L. J. J. Tan et al., "Temperature Dependence of Avalanche Breakdown in InP and InAlAs," IEEE J. Quantum Electronics, vol. 46, no. 8, pp. 1153-1157, Aug. 2010.
[9] P. Kleinow et al. "Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes." Infrared Physics & Technology, vol. 71, pp. 298–302, 2015.
[10] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa. "Avalanche photodiodes and quenching circuits for single-photon detection," APPLIED OPTICS , vol. 35, no. 12, pp. 1956-1976, Apr. 1996
[11] 李書誠,「單光子崩潰二極體之光子偵測特性」,國立交通大學,碩士論文,民國102年
[12] K. Sugihara, E. Yagyu, and Y. Tokuda. " Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode," J. Appl. Phys. vol. 99, pp.124502-1–124502-5, 2006
[13] R. N. Hall. "Electron-Hole Recombination in Germanium." Physical Review, vol. 87, pp. 387-387, 1952.
[14] W. Shockley and W. T. Read. "Statistics of the Recombinations of Holes and Electrons." Physical Review, vol. 87, no. 5, pp. 835-842, 1952.
[15] X. Jiang, M. A. Itzler, R. Ben-Michael and K. Slomkowski, "InGaAsP–InP Avalanche Photodiodes for Single Photon Detection," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 895-905, July-aug. 2007.
[16] N. Namekata, S. Adachi, and S. Inoue. "800MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express ,vol. 14, no. 21, pp. 10043–10049, Oct. 2006
[17] Franco Zappa, Alberto Tosi, Sergio Cova. "InGaAs SPAD and electronics for low time jitter and low noise, " Proc. of SPIE, Vol. 6583, pp.65830E-1-65830E-12, Mar. 2007
[18] A. G. Stewart, L. Wall, J. C. Jackson. "Properties of silicon photon counting detectors and silicon photomultipliers," International Journal of Optics. 56, 2, 2009
[19] W. G. Oldham, R. R. Samuelson and P. Antognetti, "Triggering phenomena in avalanche diodes," IEEE Transactions on Electron Devices, vol. 19, no. 9, pp. 1056-1060, Sept. 1972.
[20] S. Donati. " Photodetectors Devices Circuits and Application, " 2000.
[21] Jun Zhang, Mark A Itzler, Hugo Zbinden and Jian-Wei Pan. "Advances in InGaAs/InP single-photon detector systems for quantum communication" Science & Applications, MARCH 2015.
[22] 呂秉耕,「單光子崩潰二極體光計數與暗計數之時間特性」,國立交通大學,碩士論文,民國103年
[23] Ghioni, Massimo, et al. "Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution." Optics East. International Society for Optics and Photonics, 2006.
[24] A. Spinelli and A. L. Lacaita, "Physics and numerical simulation of single photon avalanche diodes," IEEE Transactions on Electron Devices, vol. 44, no. 11, pp. 1931-1943, Nov. 1997.
[25] Siyu Cao, Yue Zhao, Shuai Feng, Yuhua Zuo, Lichun Zhang, Buwen Cheng and Chuanbo Li. "Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes." Nanoscale Res Lett, 2019.
[26] I. Vurgaftmana and J. R. Meyer. "Band parameters for III–V compound semiconductors and their alloys." J. Appl. Phys. vol. 89, pp.5815-5875, 2001
[27] 鄭民安,「砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列之光學串擾模擬」,國立中央大學,碩士論文,民國109年
[28] M.R. Ravi, Amitava DasGupta and Nandita DasGupta. "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment." Journal of Crystal Growth, vol. 268, pp. 359–363, 2004.
[29] Rochas, A., et al. "Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology." Review of scientific instruments pp.3263-3270, 2003.
[30] G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan. "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes." Appl. Phys. Lett. vol. 86, pp. 063505-1-063505-3, 2005.
[31] Gauri Vibhakar Karve. "Avalanche Photodiodes As Single Photon Detectors." The University of Texas at Austin, PhD Dissertation, May 2005.
[32] Yingjie Ma et al. "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." Opt. Express, vol. 24, pp. 7823-7834, 2016.
[33] M. Liu et al., "High-Performance InGaAs/InP Single-Photon Avalanche Photodiode," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 887-894, July-aug. 2007.
[34] A. Tosi, N. Calandri, M. Sanzaro and F. Acerbi, "Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 192-197, 1 Nov.-Dec. 2014, Art no. 3803406.
[35] Xiao Meng, Shiyu Xie, Xinxin Zhou, Niccolo Calandri, Mirko Sanzaro, Alberto Tosi, Chee Hing Tan and Jo Shien Ng. "InGaAs-InAlAs single photon avalanche diode for 1550nm photons" R. Soc. open sci.3, FEBRUARY, 2016.
[36] Y. Liang, Y. Jian, X. Chen, G. Wu, E. Wu and H. Zeng, "Room-Temperature Single-Photon Detector Based on InGaAs/InP Avalanche Photodiode With Multichannel Counting Ability," IEEE Photonics Technology Letters, vol. 23, no. 2, pp. 115-117, Jan.15, 2011.
[37] A. Tosi, F. Acerbi, M. Anti and F. Zappa, "InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail," IEEE Journal of Quantum Electronics, vol. 48, no. 9, pp. 1227-1232, Sept. 2012.
[38] X. Meng, C. Tan, S. Dimler, J. David, and J. Ng, "1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature," Opt. Express 22, pp. 22608-22615, 2014 .