跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡振裕
Chen-Yu Tsai
論文名稱: 壓電靜電混能式自供電感測器與人機介面應用
Hybridization of piezoelectric and triboelectric self-powered sensors for Personalized Human-Machine.
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 近場電紡織技術壓電纖維聚偏氟乙烯可撓性印刷電路板混能式自供電感測器
外文關鍵詞: polyvinylidene fluoride(PVDF), Near-field electrospinning(NFES), micro/nano fibers (MNFs), Hybrid self-powered sensor, 、printed circuit board (PCB)
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用近場電紡織技術(near-field electrospinning,NFES)研究壓電奈米纖維,製作成奈米發電機(nanogenetator,NG)/形變感測器,此研究以直寫(direct-write)方式將具有高度壓電性能的高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用近場電紡織技術與XY精密位移平台將奈微米纖維(nano /micro fibers,NMFs )精確的排列在可撓性基底上製作成壓電奈米發電機,並且進行一系列訊號測量與應用。其一研究繼承實驗室之過往實驗,以可撓性印刷電路板(printed circuit board ,PCB)沉積壓電纖維,為了使發電機更有效率的蒐集機械能,透過結合了靜電發電機與壓電發電機做出混能式自供電感測器,並將其製成個人化混能式自供電鍵盤,其二採用具奈米表面結構之聚二甲基矽氧烷(polydimethylsiloxane,PDMS)翻模來提高靜電效應輸出,成功讓混能式發電機有更高的適應性與輸出功率。最後將有奈米表面結構之混能式自供電感測器做成適當尺寸,用以量測人體眨眼與臉頰肌肉所產生之動作與震動,並將其應用在感測人體動作,藉由產生的訊號來分辨不同的動作,未來可在智慧型穿戴式裝置上有著很好的發展潛力。


    In this paper, Near-field electrospinning (NFES) technology has studied and used to deposit the nano/micro fibers on the different base, and a nanogenerator (NG)/deformation sensor was fabricated. In this study, polyvinylidene fluoride (PVDF), a polymer material with high piezoelectric properties, was deposited and accurately arranged on a flexible substrate by direct-write method using near-field electrospinning technology and XY precision motion stage as a piezoelectric nano-generator. Then use the sample to perform a series of signal measurements and verification. One of the research continued the past experiments in the laboratory. the use of flexible printed circuit board (PCB) to deposit piezoelectric fibers, in order to make the generator more efficient to collect mechanical energy, we combined the electrostatic generator and piezoelectric generator. The hybrid generator makes a self-powered sensor, and it is made into a personal hybrid self-powered keyboard. The second method uses polydimethylsiloxane (PDMS) with a nanometer surface structure to increase the electrostatic generator effect output, and successfully allows the hybrid generator to have higher adaptability and output power. We use a self-powered sensor with a nano-surface structure to measure the movement and vibration generated by the body's blink and cheek muscles, and apply it to sense human movements. The signals to distinguish different actions, in the future can have a good development potential in smart wearable devices.

    目錄 摘要 II Abstract III 致謝 V 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2研究動機與方法 1 1-3論文架構 3 第二章 文獻回顧 4 2-1電紡織技術 4 2-2奈米發電器與混能式自供電感測器應用 5 第三章 近場電紡織壓電纖維製作與混能式個人化自供電鍵盤應用 7 3-1 導論 7 3-2 實驗 8 3-2-1實驗樣品 8 3-2-2 量測設備架構 10 3-3結果與討論 12 第四章 新型混能式奈米表面結構發電器應用在人體生理現象監測 23 4-1導論 23 4-2實驗 24 4-2-1 電紡織溶液 24 4-2-2 新型混能式奈米表面結構發電器製作 25 4-3結果與討論 30 第五章 結論 39 參考文獻 40 實驗儀器 43

    [1] T. Kowalewski, S. NSKI and S. Barral, TECHNICAL SCIENCES 53,4 (2005).
    [2] F.L. Zhou, R.H. Gong and I. Porat, J Appl Polym Sci 115, 2591 (2010).
    [3] C. L. Sun , J. Shi , D. J. Bayerl , X. D. Wang , Energy Environ. Sci., 2011, 4, 4508.
    [4] M. A. Rahman, B. C. Lee, D. T. Phan, G. S. Chung, Smart Mater. Struct., 2013, 22, 085017.
    [5] X. Y. Xue , S. H. Wang , W. X. Guo , Y. Zhang , Z. L. Wang , Nano Lett., 2012, 12, 5048 .
    [6] D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun., 2011, 32, 831.
    [7] Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 2006, 12, 1197-1211.
    [8] Kowalewski, S. Blonski, S. Barral, Bull. Pol. Acad. Sci.: Tech. Sci., 2005, 53, 385.
    [9] F.L. Zhou, R.H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
    [10] Y. K. Fuh, B. S. Wang, C. Yu. Tsai, Scientific Report, 2017, SREP-16-50149B.
    [11] J. D. Schiffman, C. L. Schauer, Biomacromolecules, 2007, 8, 2665.
    [12] D. Sun, C. Chang, S. Li, L.W. Lin, Nano Lett., 2006, 6, 839.
    [13] C. Chang, K. Limkrailassiri, L.W. Lin, Appl. Phys. Lett., 2008, 93, 123111.
    [14] Y. K. Fuh, B. S. Wang, Nano Energy, 2016, 30, 677-683.
    [15] J. Chang, L. Lin, Transducers, 2011,747.
    [16] R. Yang, Y. Qin, C. Li, G. Zhu, Z. L. Wang, Nano Lett. 2009, 9, 1201.
    [17] C. Xu, X. Wang, Z. Lin Wang, J. Am. Chem. Soc. 2009, 131, 5866.
    [18] Y. K. Fuh, P. C. Chen, Z. M. Huang, H. C. Ho, Nano Energy 2015, 11, 671.
    [19] Y. K. Fuh, S. C. Lee, C. Y. Tsai, Sensor Actuat A-Phys., 2017, 268, 148-154.
    [20] F. L. Zhou, R. H. Gong,I. Porat, J. Mater. Sci., 2009, 44, 5501.
    [21] S. Roundy, P. Wright, Smart Mater. Struct., 2004, 13, 1131.
    [22] H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,2008, 4, 1851.
    [23] S. Priya, Appl. Phys. Lett., 2005,87, 184101.
    [24] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett., 2010, 10, 3151.
    [25] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, ACS Nano, 2015, 9, 105-116.
    [26] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Sci. Adv., 2017, 3, e1700694.
    [27] X. H, et al., Adv. Funct. Mater., 2017, 27, 4, 1601255.
    [28] Y. C. Lai, et al., Adv. Funct. Mater., 2017, 27, 1, 1604462.
    [29] S. W. Chen, et al., Adv. Energy Mater., 2017, 7, 1, 1601255.
    [30] D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun., 2011, 32, 831.
    [31] Y. K. Fuh, S.Y. Chen, C. S. Yeh, Applied Physics Letters, 2013, 103, 3, 033014.
    [32] Y. K. Fuh, J. C. Ye, P. C. Chen, H. C. Ho, Z. M. Huang, ACS Applied Materials & Interfaces, 2015, 7, 16923.
    [33] Y.K. Fuh, P. C. Chen, Z. M. Huang, RSC Advances, 2015, 5, 67787.
    [34] Y. K. Fuh, C. S. Yeh, P. C. Chen, Z. M. Huang, Journal of Materials Chemistry A, 2014, 2, 38, 16101.

    QR CODE
    :::