跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林迪弘
Ti-Hung Lin
論文名稱: 電漿處理對氟化物和氧化物薄膜的影響之研究
Effect of plasma treatment on the fluoride and oxide thin films
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 二氧化鈦氟化鑭氟化鋁電漿處理
外文關鍵詞: AlF3, plasma treatment, TiO2, LaF3
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別對氟化物與氧化物薄膜作電漿處理的研究。第一部份的氟化物的研究中,我們對氟化鋁和氟化鑭薄膜進行不同氣體(氧氣、氬氣和CF4)的電漿處理,探討不同氣體電漿對於氟化鋁和氟化鑭薄膜在深紫外波段的光學特性、微觀結構以及成分分析的影響。實驗結果顯示,氟化鋁薄膜經過氧氣電漿處理後,在吸收上雖有略微增加,但折射率增加,並降低了表面粗糙度,而且在EDS成分分析中,也顯示氟化鋁薄膜中碳的含量減少;在氟化鑭薄膜方面,氧氣和CF4的電漿處理後,吸收都明顯增加,當通以直流電源來進行氬氣電漿處理時,薄膜表面轟擊出更多的孔隙,而穿透率之非均勻現象變為更明顯,並且折射率下降,粗糙度增大。
    第二部分為對於氧化物的研究,我們選用二氧化鈦薄膜進行電漿處理。實驗中,電漿處理所使用的氣體分別為氬氣、氮氣加氬氣和氧氣三種氣體,除了探討電漿處理對於二氧化鈦薄膜其光學特性、微觀結構和成分與鍵結上的影響外,亦針對其光催化特性的差異做研究。實驗結果發現,在氬氣和氮氣加氬氣的電漿處理後,由於表面產生更多孔隙,使得接觸面積增加。另外氮氣電漿也有和薄膜表面的鈦鍵結的趨勢,使吸收波長由紫外光區往可見光區偏移,在光觸媒的特性表現上明顯的增進。


    In this research, plasma treatment of various gases was implemented to influence the properties of fluoride (AlF3 and LaF3) and oxide (TiO2) thin films. The optical properties, surface modification and composition of thin films were analyzed in deep ultraviolet region. The results showed that the absorption and refractive index of aluminum fluoride thin films were increased. The surface roughness of films decreased as measure by atomic force microscope. The element of carbon in the films was reduced by EDS analysis. In lanthanum fluoride thin films, the absorption of thin films was increased after oxygen and CF4 plasma treatment. The inhomogeneous phenomenon of films was more obvious with using the D.C power source of argon plasma treatment.
    In oxide thin films, different gases (argon、nitrogen and oxygen) plasma treatment for titanium dioxide thin films was researched. The optical characteristic, surface modification and chemical bonding state of thin films were analyzed. The photocatalytic activity of thin films was also evaluated. The absorption edge of the films shifted to visible light region after argon and nitrogen plasma treatment. Therefore, the photocatalytic activity of films is also advanced.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 基本理論 5 2-1 電漿原理 5 2-1-1 電漿後處理 8 2-2 鍍膜原理 9 2-2-1 直流磁控濺鍍(DC Magnetron Sputtering Deposition)【14】 9 2-2-2 熱阻舟蒸鍍【14】 12 2-3 氟化物:氟化鋁和氟化鑭的材料特性 13 2-4 氧化物:二氧化鈦的光觸媒特性【22~25】 15 2-4-1 添加異質原子對二氧化鈦薄膜性質的改變 20 第三章 研究目標與實驗內容 22 3-1 研究目標 22 3-2 研究內容與實驗架構 22 3-2-1 基板的準備與清潔 24 3-2-2 薄膜的製鍍 25 3-2-3 電漿後處理 27 3-3 量測裝置與分析方法 28 3-3-1 光學特性量測 28 3-3-2 微觀結構量測 30 3-3-3 成分與鍵結分析 34 3-3-4 光催化特性量測 35 第四章 實驗結果與討論 38 4-1 氟化鋁薄膜在電漿處理前後的特性討論 38 4-1-1 在製程中加熱和製程後加熱對氟化鋁薄膜的影響 38 4-1-2 各種電漿對氟化鋁薄膜後處理的影響 43 4-2 氟化鑭薄膜在電漿處理前後的特性討論 51 4-2-1 各種電漿對氟化鑭薄膜後處理的影響 52 4-2-2 直流電源的氬氣電漿對氟化鑭薄膜後處理的影響 55 4-3 二氧化鈦薄膜在電漿處理前後的特性討論 62 4-3-1 各種電漿對二氧化鈦薄膜後處理的影響 62 4-3-2 直流電源的氬氣和氮氣電漿對二氧化鈦薄膜後處理的影響 72 第五章 結論 81 Conclusion 83 參考文獻 85

    【1】 J. Ullmann, C. Zaczek, A. Pazidis, J. Lüdecke, B. von Blanckenhagen, D. Tonova, “Optical Coatings for VUV Applications”, Optical Interference Coatings Conference, Banff, Alberta, Canada, ThB4, 2001.
    【2】 S. Günster, P. Kadkhoda, D. Ristau, “Online Spectrophotometric Characterisation of MgF2/LaF3-Fluoride Multilayer Coatings Production”, Optical Interference Coatings Conference, Banff, Alberta, Canada, ME9, 2001.
    【3】 D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “UV-Optical and Microstructural Properties of MgF2- and LaF3-Coatings Deposited by IBS and PVD Processes”, Optical Interference Coatings Conference, Banff, Alberta, Canada, ThA5, 2001.
    【4】 S. Niisaka, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, T. Saito, J. Saito, A. Tanaka, K. Sone, A. Matsumoto, “Development of Optical Coatings for 157nm Lithography ( I: Coating Materials ) ”, Optical Interference Coatings Conference, Banff, Alberta, Canada, ThB7, 2001.
    【5】 E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser Conditioning of LaF3/MgF2 Dielectric Coating at 248 nm”, Appl. Opt., Vol 35, 5613, 1996
    【6】 Fujishima, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” K. Honda, Nature, 238, 37-38, 1972.
    【7】 行政院國家科學委員會精密儀器發展中心,真空技術與應用,初版,行政院國家科學委員會精密儀器發展中心,新竹市,民國90年
    【8】 C. C. Lee, B. H. Liao and M. C. Liu, “AlF3 thin films deposited by reactive magnetron sputtering with Al target”, Optics Express, Vol 15, 9152-9156, JUL 2007.
    【9】 劉旻忠,「193nm深紫外光學薄膜之研究」,國立中央大學,博士論文,民國94年
    【10】 A. KalessT, U. Schulz, P. Munzert, N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers”, Surface & Coatings Technology, Vol 200, 58– 61, 2005
    【11】 K. Choi, T. Eom, C. Lee, “Comparison of the removal efficiency for organic contaminants on silicon wafers stored in plasticboxes between UV/O3 and ECR oxygen plasma cleaning methods”, Thin Solid Films, Vol 435, 227–231, 2003.
    【12】 E. Kondoh, M. R. Baklanov, H. Bender, and K. Maexc, “Structural Change in Porous Silica Thin Film after Plasma Treatment” Electrochemical and Solid-State Letters, 1 (5) 224-226, 1998
    【13】 王宣文,「以電漿表面預處理法在塑膠基板上製鍍抗反射膜」,國立中央大學,碩士論文,民國94年
    【14】 李正中,薄膜光學與鍍膜技術,五版,藝軒圖書出版社,台北市,2006
    【15】 M. Zukic, D.G. Torr, J.F. Spann, and M.R. Torr, “Vacuum Ultraviolet Thin Film. 1: Optical Constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 Thin Films”, Appl. Opt., Vol 29, 4284, 1990.
    【16】 M. Zukic, D.G. Torr, J.F. Spann, and M.R. Torr, “Vacuum Ultraviolet Thin Film. 2: Vacuum ultraviolet all-dielectric narrowband filters”, Appl. Opt., Vol 29, 4293, 1990.
    【17】 F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet”, Appl. Opt., Vol 24, 496, 1985.
    【18】 D. Smith and P. Baumeister, “Refractive index of some oxide and fluoride coating materials”, Appl. Opt., Vol 18, 111, 1979.
    【19】 O. R. Wood II, H. G. Craighead, J. E. Sweeney, P. J. Maloney, “Vacuum ultraviolet loss in magnesium fluoride films”, Appl. Opt., Vol 23, 3644, 1984.
    【20】 Y. Uchida, R. Kato, E. Matsui, “Optical Properties of Some Solids in The Vacuum Ultraviolet”, J. Quant. Spectry. Radiat. Transfer. 2, 589-598, 1962.
    【21】 W. Hayes, Crystals With The Fluorite Structure, Oxford, Eng., chapter 1, 1974.
    【22】 呂信德,「磁控濺鍍 TiO2-WO3 複合膜光催化性質之研究」,國立成功大學,碩士論文,2003
    【23】 許明琮,「射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜之研究」,國立雲林科技大學,碩士論文,2005
    【24】 黃建豪,「脈衝直流濺鍍法製作參雜氮之二氧化鈦」,國立中央大學,碩士論文,2007
    【25】 高濂、鄭珊、張青紅,「奈米光觸媒」,五南出版,2004
    【26】 S. N. Frank , A. J. Bard, ”Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem., Vol 81, 1484~1488, 1977.
    【27】 J. K. Leland, A. J. Bard, ”Photochemistry of colloidal semiconducting iron oxide polymorphs”, J. Phys. Chem., Vol 91, 5076~5083, 1987.
    【28】 A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735-758, 1995
    【29】 沈偉韌、趙文寬、賀飛等,「化學進展」,10, 349~361, 1998
    【30】 A. Mills, S. L. Hunte, “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35, 1997
    【31】 A. Sclafani, J. H. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem., 100, 13655, 1996.
    【32】 A. Sclafani, L. Palmisano, M. Schiavello, ”Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion”, J. Phys. Chem., 94, 829, 1990.
    【33】 J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, ”Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, J. Am. Chem., Soc. 109, 3639~3646, 1987.
    【34】 S. Sato, “Photocatalytic activity of NOx-doped TiO2 in the visible light region”, Chem. Phys. Lett., 123, 126~128, 1986.
    【35】 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-LightPhotocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 2939(5528):269~271, 2001.
    【36】 Y. Takata, S. Hidaka, M. Masuda and T. Ito, “Pool boiling on a superhydrophilic surface”, Int. J. Energy Res, 27, 111~119, 2003
    【37】 Y. Chiba*, K. Kashiwagi, H. Kokai, “Plasma surface treatment effect of TiO2 thin film”, Vacuum, Vol 74, 643–646, 2004.
    【38】 J. B. Hana, X. Wanga, N. Wanga, Z. H. Weia, G. P. Yua, Z. G. Zhoua, Q. Q. Wanga, “Effect of plasma treatment on hydrophilic properties of TiO2 thin films”, Surface & Coatings Technology, Vol 200, 4876 – 4878, 2006.
    【39】 C. K. Jung, S. H. Cho, S. B. Lee, T. K. Kim, M. N. Lee and J. H. Boo, “STUDY OF IMPROVEMENT TECHNOLOGY OF PHOTOCATALYTIC ACTIVITY ON THE TiO2 SOL BY PLASMA TREATMENT AFTER DIP-COATING PROCESSING”, Surface Review and Letters, Vol. 10, No. 4, 635-640, 2003.
    【40】 C. M. Huang, L. C. Chen, K. W. Cheng, G. T. Pan, “Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation”, Journal of Molecular Catalysis A: Chemical, Vol 261, 218–224, 2007.
    【41】 L. Miaoa, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko, S. Toh, “The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment”, Journal of Crystal Growth, Vol 260, 118–124, 2004.
    【42】 S. Tanemura, L. Miao, H. Watanabe, Y. Mori, “Spectroscopic ellipsometry study on TiO2 thin films modified by N2–H2 plasma surface treatment”, Applied Surface Science, Vol 244, 546–549, 2005.
    【43】 R. A. Spurr, H. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Anal. Chem., Vol 29, 760–762, 1957.

    QR CODE
    :::