| 研究生: |
楊子萱 Tzu-Hsuan Yang |
|---|---|
| 論文名稱: |
水溶液法製備CsxPbyBrz鈣鈦礦系材料之研究 The Synthesized and Analysis of CsxPbyBrz Perovskites via Water-based Process |
| 指導教授: |
詹佳樺
Chia-Hua Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 鈣鈦礦 、水溶液 、粉末 |
| 外文關鍵詞: | Perovskite, aqueous, Powder |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全無機鈣鈦礦(All-inorganic Pervoskite)晶體材料不僅具備相當優異的光吸收係數、電子遷移率、色純度以及可調式發光波長的光電特性之外,其可溶液製備更是促使鈣鈦礦材料在太陽能電池、量子點以及發光二極體等應用上具有極大發展潛力的優勢之一。
本研究首次提出「水溶液法(Water-based Process)」,在室溫下以“水”為溶劑,藉由調整系統內CsBr及Pb(NO3)2莫耳濃度製備出CsxPbyBrz鈣鈦礦系之粉末。並以XRD、SEM以及EDS分析其晶體結構以及合成機制,再佐以UV-Vis、UPS及PL分析各粉末的光學性質。綜合其結果顯示,在CsBr不足的情況之下,可合成出間接能隙為3.1eV且光致發光為紫光及橘光之二維板狀CsPb2Br5粉末;而隨著CsBr濃度逐漸提升,則會形成CsPb2Br5及CsPbBr3兩相共存之過渡帶,其表面會具有奈米級CsPbBr3量子侷限效應的綠光產生;而當CsBr為富有相時,即可合成出高品質、直接能隙為2.3eV之三維單斜CsPbBr3粉末。
最後,本研究不僅通過改變CsX鹵素原子製備出多種鈣鈦礦粉末之外,亦選取最低成本且高品質的CsPbBr3鈣鈦礦粉末,以製備太陽能電池、發光二極體及可撓式發光元件為目標,成功將粉末應用於單源熱蒸鍍及噴霧法等多種薄膜製程當中,不僅可以有效地改善傳統製程中有機溶劑對環境的汙染,亦可避免高沸點油性配體對商業應用上所造成之限制,達到低成本、大面積、高產率且環保無汙染等訴求,展現出水溶液法製備鈣鈦礦之技術無限的發展潛力。
In this study, we report for the first time the synthesized of perovskite powder by “ water-based process ”. It is not only quite simple at room temperature, but also through the "water" as a solvent without any high boiling organic solvents and ligands, achieving low-cost, large-area, mass production and environmentally friendly.
CsxPbyBrz powder was obtained by systematically varying the molar ratios of CsBr/Pb(NO3)2 in the deionized water. We used the XRD, SEM and EDS to evaluate the powders CsxPbyBrz crystal structural and chemical composition. Therefore, we combined our experimental observations found that the chemical reaction mechanism is related to “ Solubility equilibrium ” , so that CsBr in the system can reach the saturated state, thereby inhibiting the degradation reaction of CsPbBr3 in water.
In addition, we also use the UV-Vis, UPS and PL spectrum to analysis the optical and electrical properties. The results show that with the increase of CsBr concentration, the influence is gradually changed from indirect energy gap 3.1eV CsPb2Br5 to direct energy gap 2.3eV CsPbBr3. Moreover, the crystal growth mechanism for the water-based process was investigated by TEM analysis.
Finally, our research team successfully applied this powder to single-source evaporation and spray-coated technique, and also prepared various perovskite powders by changing the halogen atoms of CsX, demonstrating the unlimited development potential of this water-based process synthesized perovskite technology.
[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. AM. CHEM. SOC., vol. 131, pp. 6050–6051, 2009.
[2] N. J. Jeon, H. Na, E. H. Jung, T-Y. Yang, Y. G. Lee, G. Kim, H-W. Shin, S. Seok, J. Lee, and J. Seo, "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells," Nature Energy, vol. 3, no. 8, pp. 682-689, 2018.
[3] H. L. WELLS, "Uber die Casium- und Kalium-Blei halogenide. ," Ann. Chim. Phys., 1893.
[4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
[5] H-S. Kim, C-R. Lee, J-H. Im, K-B. Lee1, T. Moehl, A. Marchioro, S-J. Moon, R. Humphry-Baker, J-H. Yum, J. E. Moser, M. Gratzel, and N-G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Sci Rep, vol. 2, pp. 591, 2012.
[6] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, "Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells," J Phys Chem Lett, vol. 7, no. 1, pp. 167-72, 2016.
[7] M. Kulbak, D. Cahen, and G. Hodes, "How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells," The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015.
[8] X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, and H. Chen, "Carbon-Based CsPbBr3 Perovskite Solar Cells All-Ambient Processes and High Thermal Stability," ACS Appl Mater Interfaces, vol. 8, no. 49, pp. 33649-33655, 2016.
[9] C. Jia, X. Zhao, Y-H. Lai, J. Zhao, P-C. Wang, D-S. Liou, P. Wang, Z. Liu, W. Zhang, W Chen, Y-H. Chu, and J. Li, "Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate," Nano Energy, vol. 60, pp. 476-484, 2019.
[10] L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, and J. Perez-Prieto, "Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles," J Am Chem Soc, vol. 136, no. 3, pp. 850-3, 2014.
[11] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," Nano Lett, vol. 15, no. 8, pp. 5635-40, 2015.
[12] Y. W. Xiaoming Li , Shengli Zhang , Bo Cai , Yu Gu , Jizhong Song , and Haibo Zeng "CsPbX3 Quantum Dots for Lighting and Displays Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes," Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
[13] M. Zhang, Z-Q. Tian, D-L. Zhu, H. He, S-W. Guo, Z-L. Chen and D-W. Pang, "Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields," New Journal of Chemistry, vol. 42, no. 12, pp. 9496-9500, 2018.
[14] Y. Liu, F. Li, Q. Liu, and Z. Xia, "Synergetic Effect of Postsynthetic Water Treatment on the Enhanced Photoluminescence and Stability of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals," Chemistry of Materials, vol. 30, no. 19, pp. 6922-6929, 2018.
[15] Y. Li, Y. Lv, Z. Guo, L. Dong, J. Zheng, C. Chai, N. Chen, Y. Lu, and C. Chen, "One-Step Preparation of Long-Term Stable and Flexible CsPbBr3 Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes," ACS Appl Mater Interfaces, vol. 10, no. 18, pp. 15888-15894, 2018.
[16] Z. Yang, M. Wang, J. Li, J. Dou, H. Qiu, and J. Shao, "Spray-Coated CsPbBr3 Quantum Dot Films for Perovskite Photodiodes," ACS Appl Mater Interfaces, vol. 10, no. 31, pp. 26387-26395, 2018.
[17] J. Song , J. Li , X. Li , L. Xu , Y. Dong , and H. Zeng, "Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)," Adv Mater, vol. 27, no. 44, pp. 7162-7, 2015.
[18] G. Li , J. Huang, Y. Li, J. Tang, and Y. Jiang, " Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange," Nano Research, vol. 12, no. 1, pp. 109-114, 2018.
[19] S. Yuan, Z-K. Wang, M-P. Zhuo, Q-S. Tian, Y. Jin, and L-S. Liao, "Self-Assembled High Quality CsPbBr3 Quantum Dot Films toward Highly Efficient Light-Emitting Diodes," ACS Nano, vol. 12, no. 9, pp. 9541-9548, 2018.
[20] T. Chiba, Y. Hayashi1, H. Ebe1, K. Hoshi, J. Sato1, S. Sato, Y-J. Pu , S. Ohisa, and J. Kido, "Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices," Nature Photonics, vol. 12, no. 11, pp. 681-687, 2018.
[21] M. Aamir, T. Adhikari, M. Sher, M. D. Khan, J. Akhtar, J‐M. Nunzi, "Cesium Lead Halide Perovskite Nanostructures Tunable Morphology and Halide Composition," Chem Rec, vol. 18, no. 2, pp. 230-238, 2018.
[22] J. Shamsi, A. S. Urban, M. Imran, L. D. Trizio, and L. Manna, "Metal Halide Perovskite Nanocrystals Synthesis, Post-Synthesis Modifications, and Their Optical Properties," Chem Rev, vol. 119, no. 5, pp. 3296-3348, 2019.
[23] H. Zhang, X. Liu, J. Dong, H. Yu, C. Zhou, B. Zhang, Y. Xu, and W. Jie, "Centimeter-Sized Inorganic Lead Halide Perovskite CsPbBr3 Crystals Grown by an Improved Solution Method," Cryst. Growth Design, vol. 17, no. 12, pp. 6426-6431, 2017.
[24] L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, "Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling," ACS Appl Nano Mater, vol. 1, no. 3, pp. 1300-1308, 2018.
[25] C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and Characterization of Nearly Monodisperse CdE(E = S, Se, Te) Semiconductor Nanocrystallites," J. Am. Chem. Soc, vol. 115, pp. 8706-8715, 1993.
[26] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I) Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett, vol. 15, no. 6, pp. 3692-6, 2015
[27] A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, and Y. Liu, "Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals:The Role of Organic Acid, Base, and Cesium Precursors," ACS Nano, vol. 10, no. 8, pp. 7943-54, 2016
[28] T. Udayabhaskararao, L. Houben, H. Cohen, M Menahem, I. Pinkas, L. Avram, T. Wolf, A. Teitelboim, M. Leskes, O. Yaffe, D. Oron, and M. Kazes, "A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivation," Chemistry of Materials, vol. 30, no. 1, pp. 84-93, 2017.
[29] F. Zhang, H. Zhong, C. Chen, X-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots Potential Alternatives for Display Technology," Acsnano, vol. 9 no. 4, pp. 4533–4542, 2015
[30] Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira, and E. H. Sargent, "Efficient Luminescence from Perovskite Quantum Dot Solids," ACS Appl Mater Interfaces, vol. 7, no. 45, pp. 25007-13, 2015.
[31] S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature," ACS Nano, vol. 10, pp. 3648−3657, 2016.
[32] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals," Science, vol. 347, pp. 519-522, 2015.
[33] Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Bö hm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, "Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization," Cryst. Growth Design, vol. 16, no. 10, pp. 5717-5725, 2016.
[34] Z-Y. Zhu, Q-Q. Yang, L-F. Gao, L. Zhang, A-Y. Shi, C-L. Sun, Q. Wang, and H-L. Zhang, "Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots," J Phys Chem Lett, vol. 8, pp. 1610-1614, 2017.
[35] D. P. Pal, S. Saha, A. Banik, A. Sarkar, and D. K. Biswas, "All-Solid-State Mechanochemical Synthesis and Post-Synthetic Transformation of Inorganic Perovskite-type Halides," Chemistry, vol. 24, no. 8, pp. 1811-1815, 2018
[36] M. Liu, J. Zhao, Z. Luo, Z. Sun, N. Pan, H. Ding, and X. Wang, "Unveiling Solvent-Related Effect on Phase Transformations in CsBr–PbBr2 System Coordination and Ratio of Precursors," Chemistry of Materials, vol. 30, no. 17, pp. 5846-5852, 2018.
[37] W. Shen, L. Ruan, Z. Shen, and Z. Deng, "Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets," Chem Commun, vol. 54, no. 22, pp. 2804-2807, 2018.
[38] I. Dursun, M. D. Bastiani, B. Turedi, B. Alamer, A. Shkurenko, J. Yin, A. M. El-Zohry, I. Gereige, A. AlSaggaf, O. F. Mohammed, M. Eddaoudi, and O. M. Bakr, "CsPb2Br5 Single Crystals Synthesis and Characterization," ChemSusChem, vol. 10, no. 19, pp. 3746-3749, 2017.
[39] P. Acharyya, P. Pal, P. K. Samanta, A. Sarkar, S. K. Pati, and K. Biswas, "Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties," Nanoscale, vol. 11, no. 9, pp. 4001-4007, 2019.
[40] J. Li, H. Zhang, S. Wang, D. Long, M. Li, Y. Guo, Z. Zhong, K. Wu, D. Wang, and T. Zhang, "Synthesis of all-inorganic CsPb2Br5 perovskite and determination of its luminescence mechanism," RSC Advances, vol. 7, no. 85, pp. 54002-54007, 2017.
[41] H. Lin, C. Zhou, Y. Tian, T. Siegrist, and B. Ma, "Low-Dimensional Organometal Halide Perovskites," ACS Energy Letters, vol. 3, no. 1, pp. 54-62, 2017.
[42] X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, "Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites," ACS Energy Letters, vol. 4, no. 1, pp. 242-248, 2018.
[43] J. Kang, and L-W. Wang, "High defect tolerance in lead halide perovskite CsPbBr3," J. Phys. Chem. Lett, vol. 8, no. 2, pp. 489-493, 2017.
[44] B-R. Chen, W. Sun, D. A. Kitchaev, J. S. Mangum, V. Thampy , L. M. Garten, D. S. Ginley, B. P. Gorman, K. H. Stone, G. Ceder, M. F. Toney, and L. T. Schelhas, "Understanding crystallization pathways leading to manganese oxide polymorph formation," Nature Communications, vol. 9, no. 1, pp. 2553, 2018.
[45] Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song, D. Gao, and X. Xu, "Shape-Controlled Synthesis of All-Inorganic CsPbBr3 Perovskite Nanocrystals with Bright Blue Emission," ACS Appl Mater Interfaces, vol. 8, no. 42, pp. 28824-28830, 2016.