| 研究生: |
譚國驊 Kuo-Hua Tan |
|---|---|
| 論文名稱: |
季節循環、聖嬰現象與全球氣候變遷之間交互作用的探討 A study on the interaction among seasonal cycle, ENSO, and global climate change |
| 指導教授: |
李永安
Yung-an Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 耦合模式比較計畫—階段3 |
| 外文關鍵詞: | CMIP3 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的主要目的是利用從觀測資料所發現的季節循環間交互作用機制做為篩選條件,來選取比較合適的耦合環流模式所提供的情境模擬結果,來探討人類的活動對於季節循環與聖嬰現象的影響。
我們所採用的資料除了美國國家海洋和氣象管理局標準化過的海溫資料(ERSST)與美國氣象環境預報中心和美國國家大氣研究中心的重新分析數據資料(NCEP-NCAR reanalysis)。我們著重於世界氣候研究計畫(WCRP)的耦合模式比較計畫—階段3(CMIP3)的多模式相關模擬資料的數據分析與比較。所採用的CMIP3資料包括(1)20世紀的;(2)工業革命前;(3)二倍二氧化碳;和(4)四倍二氧化碳。觀測與這四種情境模擬所選取的海溫資料其全球經緯度網格解析度統一調整成4°(lat.) × 4°(long.),選取的資料涵蓋範圍是40°S-40°N。
我們對原始資料都會先行去除其線性趨勢。去除線性趨勢後所得的資料再分別去除其所含的(a)氣候平均與(b)氣候季節循環得到一組是有包含季節循環一組未包含季節循環的兩組變異資料。然後對資料做主分量分析得到季節循環模。然後對季節循環模進行波譜分析。
經由分析比較觀測與CMIP3的20世紀模擬資料的季節循環間交互作用機制,我們認為CSIRO MK3.5, GFDL CM2.0, GFDL CM2.1, MPI 這幾個耦合環流模式與真實地球系統運行方式比較接近,而CNRM, GISS AOM, IAP FGOALS, MIROC 3.2 HIRES, MIUB ECHO這幾個模式則與觀測的結果差異很大。我們主要比較分析GFDL CM2.0 & GFDL CM2.1模式在不同的情境所得的模擬資料。結果顯示ENSO現象的主要週期與特徵並不會因為二氧化碳的增加而有劇烈的改變。
The main purpose of this paper is to use observation data from the seasonal cycle interactions among mechanisms discovered by as a filter criteria, to select appropriate coupled general circulation models provide the situational simulation results, to explore human activity seasonal cycle and the impact of the El Niño phenomenon.
Our data apart from the National Oceanic and Atmospheric Administration (NOAA) standardized the SST data (ERSST) and National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP-NCAR reanalysis).We focus on The World Climate Research Programme''s (WCRP''s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset. By used of CMIP3 data reported enclosed (1) climate of the 20th Century experiment (20c3m) ; (2) pre-industrial control experiment (pre-industrial) ; (3) 1%/year CO2 increase experiment to doubling (1pctto2x) ; (4) 1%/year CO2 increase experiment to quadrupling (1pctto4x). Observation and simulation of these four situations selected its global sea surface temperature data uniformly into a 4°(lat.) × 4°(long.), select the data coverage is 40°S-40°N.
We first remove the linear trend on the raw data. After you remove the linear trend data derived from respectively remove it contains (a) average climate and (b) climatological seasonal cycle by one group contains seasonal cycle group does not contain a seasonal cycle variation of two sets of data. And then master component analysis to data you have seasonal cycle mode. The spectrum analysis of the seasonal cycle mode.
By analyzing and comparing they coupled seasonal cycle interaction mechanism among observed and CMIP3 20c3m data, we identified CSIRO MK3.5, GFDL CM2.0, GFDL CM2.1, MPI as CGCMs having similar behavior as the current earth’s climate system, and the CNRM, GISS AOM, IAP FGOALS, MIROC 3.2 HIRES, MIUB ECHO a few models with observations of the results varied. Furthermore, we compared results among different scenario runs from GFDL CM2.0 & GFDL CM2.1. They showed that the ENSO and seasonal cycle modes do not have any significant variation among these runs. Therefore, it appears that ENSO may not change much in the future.
Alexander, M. A., N. -. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the tropical west Pacific-Indian Oceans over the seasonal cycle and to the North Pacific in summer. Earth''s Climate: The Ocean-Atmosphere Interaction, Chunzai Wang, Shang-Ping Xie and James A. Carton eds., American Geophysical Union, 21-48.
Alfredo Ruiz-Barradas, Sumant Nigam. (2006) IPCC’s Twentieth-Century Climate Simulations: Varied Representations of North American Hydroclimate Variability. Journal of Climate 19:16, 4041-4058
An, S., and B. Wang, 2001: Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter*. J. Climate, 14, 2164-2176.
Battisti, D. S., and E. S. Sarachik, 1995: Understanding and predicting ENSO. Reviews of Geophysics, 33, 1367-1376.
Brenner, N.; Rader, C. (1976). "A New Principle for Fast Fourier Transformation". IEEE Acoustics, Speech & Signal Processing 24 (3): 264–266. doi:10.1109/TASSP.1976.1162805.
Chang, P. and Coauthors, , 2006: Climate Fluctuations of Tropical Coupled Systems-The Role of Ocean Dynamics. J. Climate, 19, 5122-5174.
Chang, P., L. Ji, B. Wang, and T. Li, 1995: Interactions between the Seasonal Cycle and El Niño-Southern Oscillation in an Intermediate Coupled Ocean-Atmosphere Model. J. Atmos. Sci., 52, 2353-2372.
Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 2122–2143.
Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, doi:10.1175/JCLI3629.1.
Diansky, N. A. and Volodin, E. M.: 2002, ‘Simulation of present-day climate with a coupled atmosphere-ocean general circulation model’, Izvestiya 38, 732–747.
Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16, 451–467.
Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamsto, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21, 27–51.
Graham, N., and W. B. White, 1988: El Nino cycle: a natural oscillator of the Pacific Ocean-atmosphere system. Science, 240, 1293-1302.
Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models.Part II: The baseline ocean simulation. J. Climate, 19, 675–697.
Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168.
Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 climate system model, Tech. Rep. 60, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia, 134 pp.
Hasumi, M., and S. Emori, 2004: K-1 coupled GCM (MIROC)description. Tech. Rep., Center for Climate System Research, University of Tokyo, Tokyo, Japan, 34 pp.
Jin, F., 1997: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. J. Atmos. Sci., 54, 811-829.
Jin, F., J. D. Neelin, and M. Ghil, 1994: El Nino on the Devil''s Staircase: Annual Subharmonic Steps to Chaos. Science, 264, 70-72.
Kalnay, E. and Coauthors, , 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437-471.
Kreyszig, E., 1999: Advanced engineering mathematics. 8th ed. John Wiley, New York.
Lau, K., and P. H. Chan, 1985: Aspects of the 40–50 Day Oscillation during the Northern Winter as Inferred from Outgoing Longwave Radiation. Monthly Weather Review, 113, 1889-1909.
Lau, W. K. M., 2005: El Nino Southern Oscillation connection. Intraseasonal variability in the atmosphere-ocean climate system, William K. M. Lau and Duane E. Waliser eds., Springer-Verlag, 271-300.
Lee, Yung-An, 2007:A coupled interaction between seasonal cycle modes and the ENSO. J. Climate, (submitted).
McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño*. Bull. Am. Meteorol. Soc., 85, 677-695.
McPhaden, M. J., 1999: Genesis and Evolution of the 1997-98 El Niño. Science, 283, 950-954.
Meehl, G., Covey, C. , Delworth, T. , Latif, Mojib, McAvaney, B. ,Mitchell, J. , Stouffer, R. and Taylor, K. (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research Bulletin of the American Meteorological Society, 88 . pp. 1383-1394. DOI
Min S-K, Legutke S, Hense A, Kwon W-T (2004) Climatology and internal variability in a 1,000-year control simulation with the coupled climate model ECHO-G. Tech. Rep. No. 2, Model and Data Group, Max Planck Institute for Meteorology, Hamburg, Germany, 67pp
Neelin, J. D., D. S. Battisti, A. C. Hirst, F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. Journal of Geophysical Research, 103, 14261-14290.
Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 1999-2024.
Preisendorfer, R. W. and C. D. Mobley, 1988: Principal Component Analysis in Meteorology and Oceanography, Elsevier, Amsterdam, 425 pp.
Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Monthly Weather Review, 110, 354-384.
Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, G. Russell, 1988: The GISS Global Climate-Middle Atmosphere Model. Part I: Model Structure and Climatology. J. Atmos. Sci., 45, 329–370.
Roeckner, E., and Coauthors, 1996a: The atmospheric general circulation model ECHAM-4: Model description and simulation of presentday climate. Max-Planck-Institut fu‥r Meteorologie, Rep. 218, 90pp. [Available from MPI fu‥r Meteorologie, Bundesstr. 55, 20146 Hamburg, Germany.]
Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany.]
Roeckner, E., J. M. Oberhuber, A. Bacher, M. Christoph, and I. Kirchner,1996b: ENSO variability and atmospheric response in a global coupled atmosphere–ocean GCM. Climate Dyn., 12, 737–754.
Russell, Joellen L., Ronald J. Stouffer, Keith W. Dixon, 2006: Intercomparison of the Southern Ocean Circulations in IPCC Coupled Model Control Simulations. J. Climate, 19, 4560–4575.
Salas-Melia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM Tech. Rep. 103, 36 pp
Schmidt, Gavin A., and Coauthors, 2006: Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. J. Climate, 19, 153–192.
Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a Coupled Ocean-Atmosphere Model. J. Atmos. Sci., 45, 549-566.
Smith, T. M., and R. W. Reynolds, 2003: Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854-1997). J. Climate, 16, 1495-1510.
Stouffer, R. J., and Coauthors, 2006: GFDL''s CM2 Global Coupled Climate Models. Part IV: Idealized Climate Response. J. Climate, 19, 723-740
Suarez, M. J., and P. S. Schopf, 1988: Delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283-3287.
Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Nino''s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11, 2191-2199.
Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Nino Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator. Science, 264, 72-74.
Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 54, 61-71.
Wang, C., and J. Picaut, 2004: Understanding ENSO physics - A review. Earth''s Climate: The Ocean-Atmosphere Interaction, Chunzai Wang, Shang-Ping Xie and James A. Carton eds., American Geophysical Union, 21-48.
Wang, C., S. Xie and J. A. Carton, 2004: Earth''s Climate: The Ocean-Atmosphere Interaction. Geophysical Monograph Series, 147, 414.
Washington, W. M., and Coauthors, 2000: Parallel Climate Model(PCM) control and transient simulations. Climate Dyn., 16, 755–774.
Wilks, D.S., 2006. Statistical Methods in the Atmospheric Sciences, 2nd Ed. International Geophysics Series, Vol. 59, Academic Press, 627 pp.
Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006:GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698–722
Yukimoto, S., and A. Noda, 2002: Improvements of the Meteorological Research Institute global ocean–atmosphere coupled GCM (MRI-CGCM2) and its climate sensitivity. CGER’s Supercomputer Activity Rep., Vol. 10, National Institute for Environmental Studies, Tsukuba, Japan, 37–44.
Zebiak, S. E., and M. A. Cane, 1987: Model El Nino-Southern Oscillation. Monthly Weather Review, 115, 2262-2278.
Zhou, T., and Coauthors, 2005a: The climate system model FGOALS s using LASG/IAP spectral AGCM SAMIL at its atmospheric component. Acta Meteorologica Sinica, 63(5), 702–715. (in Chinese).
Zhou, T., R. Yu, Z. Wang, and T. Wu, 2005b: The Atmospheric General Circulation Model SAMIL and the Associated Coupled Model FGOALS_s. China Meteorological Press, Beijing, 288pp. (in Chinese).
Zobler L (1986) A Would Soil File for Global Climate Modeling. Goddard Institute for Space Studies, New York