跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張家綾
Chia-Ling Chang
論文名稱: 羊毛脂固醇對 α-crystallin 和 SM 細胞膜間作用的影響
Influence of lanosterol on the interaction between α-crystallin and SM membranes
指導教授: 李明道
Ming-Tao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 羊毛脂固醇α-晶狀蛋白鞘磷脂
外文關鍵詞: lanosterol, α-crystallin, sphingomyelin
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白內障是老年人的常見疾病,通常會伴隨著失明的風險,白內障是眼睛水晶體中 蛋白質異常聚集造成混濁,使進入水晶體的光線發生散射所造成。人類水晶體中最豐 富的蛋白質是由 α-、β- 和 γ-晶狀蛋白所組成的,先前的研究表明 α-晶狀蛋白具有伴護分子的功能,可以防止 β- 和 γ-晶狀蛋白錯誤折疊導致蛋白質變性而聚集。 研究顯示,α-晶狀蛋白與水晶體脂質膜的結合能力隨著年齡的增長而增加,並且 觀察到 α-晶狀蛋白與錯誤折疊或展開的蛋白質和細胞膜之間的關聯性高。此外,最近的研究表明,固醇不僅可以保持水晶體透明度,還可以恢復混濁的水晶體。由於固醇 和脂質膜之間有很強的相互作用,因此我們提出一個由細胞膜媒介固醇和 α-晶狀蛋白 作用的模型來說明此機制。
    α-晶狀蛋白主要由 αA- 和 αB-晶狀蛋白兩個亞基所構成。在本論文中,我們使用 基因轉殖技術來表現蛋白質,然後進行蛋白質純化來得到 αA- 和 αB-晶狀蛋白,並使 用從雞蛋中提取的 SM(sphingomyelin) 脂質和羊毛脂固醇,作為細胞膜模型系統來 研究 α-晶狀蛋白、細胞膜和固醇間的相互作用。利用溶菌酶(lysozyme)和乙醇脫氫酶(alcohol dehydrogenase, ADH)兩種標準蛋白作為標準,測量蛋白質的聚集程度來決定 α-晶狀蛋白的抗聚集能力。通過圓二色光譜儀(circular dichroism, CD)測定 α-晶狀蛋白與細胞膜結合後二級結構的變化,以測量水溶液中與細胞膜結合 α-晶狀蛋白的比例。利用小角 X 射線散射(small angle x-ray scattering, SAXS)測量細胞膜與 α-晶狀蛋白結合後細胞膜結構變化。
    根據實驗結果的結構和功能數據,本研究將討論羊毛脂固醇對 α-晶狀蛋白和 SM 脂質膜之間相互作用的影響。結果表明 SM 脂質膜會抑制 α-晶狀蛋白的抗聚集能力, 當在細胞膜中添加羊毛脂固醇時,不僅使 SM 脂質膜增厚,還可以恢復 α-晶狀蛋白的 抗聚集能力。


    Cataract, a common disease for elder people, usually accompanies the risk of blindness. It is induced by light scattering from the clouding of the abnormal aggregation of proteins in the eye lens. The most abundant proteins in the human lens are crystallin composed of α-, β- and γ-crystallins. The previous studies have indicated α-crystallin exhibits chaperone-like activity to prevent β- and γ-crystallins from misfolding induced aggregation.
    The previous studies have reported that the binding capacity of α-crystallins to lipids membranes in the lens increases with age. Moreover, recent evidence showed that sterols can not only maintain lens transparency but also recover lens clouding. Due to the strong interaction between sterols and lipid membranes, we proposed a model based on the membrane-mediated interaction between sterols and α-crystallins to illustrate the mechanism.
    The α-crystallins are mainly composed of two relative subunits, αA- and αB-crystallin. In this study, we used gene transcription to express protein and produced αA- and αB-crystallin proteins by protein purification. SM lipids extracted from egg and lanosterol were used as model systems to investigate the interactions between α-crystallins, membranes, and sterols. Lysozyme and alcohol dehydrogenase (ADH) proteins were used as standard assays to probe the chaperone-like activity. The binding ratio of α-crystallins to membranes was determined via the change of secondary structure probed by circular dichroism (CD). Small-angle X-ray scattering (SAXS) was used to monitor the structural changes of membranes induced by bound α-crystallins.
    According to the structural as well as functional data, the effects of lanosterol on the interaction between α-crystallins and SM lipid membranes will be discussed in this study. The result indicates that SM lipid membranes are able to inhibit the anti-aggregation ability of α -crystallins. With adding lanosterol into membranes, not only thickening of SM lipid membranes but also recovering of anti-aggregation ability of α-crystallins was observed.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 符號說明 x 第一章 緒論 01 1.1 研究背景 01 1.2 水晶體構造及組成 02 1.2.1 水晶體構造 02 1.2.2 晶狀蛋白 03 1.2.3 水晶體細胞膜 05 1.2.4 磷脂質 06 1.2.5 固醇 08 1.3 白內障的形成及類型 09 1.4 研究動機 10 1.5 研究方法 11 第二章 材料、樣品製備與實驗方法 13 2.1 材料 13 2.1.1 磷脂質 13 2.1.2 固醇 13 2.1.3 蛋白質 14 2.1.4 基因片段 14 2.1.5 菌 14 2.1.6 藥品 14 2.1.7 儀器設備 15 2.2 實驗樣品製備及其基本原理 18 2.2.1 αA-Crystallin、αB-Crystallin 18 2.2.2 小型單層膜微胞(Small Unilamellar Vesicles, SUVs) 24 2.3 實驗方法及原理 27 2.3.1 粒徑分析儀(Dynamic Light Scattering, DLS) 27 2.3.2 圓二色光譜儀(Circular Dichroism Spectropolarimeter, J-810) 30 2.3.3 蛋白質抗聚集能力(chaperone like activity)測量 38 2.3.4 小角度 X 光散射(Small-angle X-ray scattering, SAXS) 42 第三章 實驗結果 51 3.1 α-crystallin 純化 51 3.2 粒徑分析儀 52 3.3 圓二色光譜儀 52 3.3.1 數據分析 52 3.3.2 結果 56 3.4 伴護活性測量結果 58 3.4.1 數據分析 58 3.5 小角度 X 光散射實驗結果 68 3.5.1 數據分析 68 3.5.2 結果 76 第四章 結果與討論 80 4.1 α-crystallin 與細胞膜樣品 80 4.2 α-crystallin 與 Egg SM 細胞膜的作用 80 4.3 加入 Lanosterol 的影響 83 第五章 結論 85 參考文獻 86

    [1] World Health Organization., "World report on vision." , 2019.
    [2] Cheng, C., et al., "Population-based study on prevalence and risk factors of age-related cataracts in Peitou, Taiwan." Zhonghua yi xue za zhi= Chinese medical journal; Free China ed, VOl  63, 2000,  pp. 641-648.
    [3] Li, L., X.-h. Wan, and G.-h. Zhao, "Meta-analysis of the risk of cataract in type 2 diabetes." BMC ophthalmology, VOl  14, 2014,  pp. 1-8.
    [4] Tsai, L.-H., et al., "Risk Factor Analysis of Early-Onset Cataracts in Taiwan." Journal of Clinical Medicine, VOl  11, 2022,  pp. 2374.
    [5] Roberts, J.E., "Ultraviolet radiation as a risk factor for cataract and macular degeneration." Eye & contact lens, VOl  37, 2011,  pp. 246-249.
    [6] Ye, J., et al., "Smoking and risk of age-related cataract: a meta-analysis." Investigative ophthalmology & visual science, VOl  53, 2012,  pp. 3885-3895.
    [7] James, E.R., "The etiology of steroid cataract." Journal of Ocular Pharmacology and Therapeutics, VOl  23, 2007,  pp. 403-420.
    [8] Graw, J., "Congenital hereditary cataracts." International Journal of Developmental Biology, VOl  48, 2004,  pp. 1031-1044.
    [9] Mylona, I., et al., "Hypertension is the prominent risk factor in cataract patients." Medicina, VOl  55, 2019,  pp. 430.
    [10] 中華民國衛生福利部統計處:〈全民健康保險醫療統計—西醫門診就診件數〉,2021 年,取自https://dep.mohw.gov.tw/dos/lp-5103-113-xCat-y110.html
    [11] Ruan, X., et al., "Structure of the lens and its associations with the visual quality." BMJ Open Ophthalmology, VOl  5, 2020,  pp. e000459.
    [12] Hejtmancik, J.F. and A. Shiels, "Overview of the Lens." Progress in molecular biology and translational science, VOl  134, 2015,  pp. 119-127.
    [13] Naumann, G.O., Pathology of the Eye. 2012: Springer Science & Business Media.
    [14] Delaye, M. and A. Tardieu, "Short-range order of crystallin proteins accounts for eye lens transparency." Nature, VOl  302, 1983,  pp. 415-417.
    [15] Bloemendal, H., et al., "Ageing and vision: structure, stability and function of lens crystallins." Progress in biophysics and molecular biology, VOl  86, 2004,  pp. 407-485.
    [16] Horwitz, J., et al., "Lens α-crystallin: function and structure." Eye, VOl  13, 1999,  pp. 403-408.
    [17] Timsina, R., et al., "Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes." Experimental eye research, VOl  206, 2021,  pp. 108544.
    [18] De Jong, W.W., J.A. Leunissen, and C. Voorter, "Evolution of the alpha-crystallin/small heat-shock protein family." Molecular biology and evolution, VOl  10, 1993,  pp. 103-126.
    [19] Selivanova, O.M. and O.V. Galzitskaya, "Structural and functional peculiarities of α-crystallin." Biology, VOl  9, 2020,  pp. 85.
    [20] Derham, B.K. and J.J. Harding, "α-Crystallin as a molecular chaperone." Progress in retinal and eye research, VOl  18, 1999,  pp. 463-509.
    [21]  Moreau, K.L. and J.A. King, "Protein misfolding and aggregation in cataract disease and prospects for prevention." Trends in molecular medicine, VOl  18, 2012,  pp. 273-282.
    [22] Haley, D.A., et al., "Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies." Journal of molecular biology, VOl  298, 2000,  pp. 261-272.
    [23] Reddy, G.B., P.A. Kumar, and M.S. Kumar, "Chaperone‐like activity and hydrophobicity of α‐crystallin." IUBMB life, VOl  58, 2006,  pp. 632-641.
    [24] CARVER, J.A., et al., "Age-related changes in bovine α-crystallin and high-molecular-weight protein." Experimental eye research, VOl  63, 1996,  pp. 639-647.
    [25] Augusteyn, R.C., "α‐crystallin: a review of its structure and function." Clinical and Experimental Optometry, VOl  87, 2004,  pp. 356-366.
    [26] Slingsby, C. and N.J. Clout, "Structure of the crystallins." Eye, VOl  13, 1999,  pp. 395-402.
    [27] Tsvetkova, N.M., et al., "Small heat-shock proteins regulate membrane lipid polymorphism." Proceedings of the National Academy of Sciences, VOl  99, 2002,  pp. 13504-13509.
    [28] Janowska, M.K., et al., "Mechanisms of small heat shock proteins." Cold Spring Harbor Perspectives in Biology, VOl  11, 2019,  pp. a034025.
    [29] Freilich, R., et al., "Protein–protein interactions in the molecular chaperone network." Accounts of chemical research, VOl  51, 2018,  pp. 940-949.
    [30] Yamamoto, M., et al., "Characterization of the hydrophobic region of heat shock protein 90." The Journal of Biochemistry, VOl  110, 1991,  pp. 141-145.
    [31] Cobb, B.A. and J.M. Petrash, "α-Crystallin chaperone-like activity and membrane binding in age-related cataracts." Biochemistry, VOl  41, 2002,  pp. 483-490.
    [32] Alberts, B., et al., Essential cell biology. 2015: Garland Science
    [33] D'avanzo, N., Lipid regulation of sodium channels, in Current Topics in Membranes:  Elsevier, 2016. p. 353-407.
    [34] Contreras, F.-X., et al., "Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes." FEBS letters, VOl  584, 2010,  pp. 1779-1786.
    [35] Clark, M.A., J. Choi, and M. Douglas, Biology, (OpenStax). 2018, OpenStax.
    [36] Zelenka, P.S., "Lens lipids." Current eye research, VOl  3, 1984,  pp. 1337-1359.
    [37] Borchman, D., "Lipid conformational order and the etiology of cataract and dry eye." Journal of lipid research, VOl  62, 2021.
    [38] Deeley, J.M., et al., "Human lens lipids differ markedly from those of commonly used experimental animals." Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, VOl  1781, 2008,  pp. 288-298.
    [39] Filippov, A., G. Orädd, and G. Lindblom, "Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers." Biophysical journal, VOl  90, 2006,  pp. 2086-2092.
    [40] McConnell, H.M. and A. Radhakrishnan, "Condensed complexes of cholesterol and phospholipids." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl  1610, 2003,  pp. 159-173.
    [41] Yang, S.-T., et al., "The role of cholesterol in membrane fusion." Chemistry and physics of lipids, VOl  199, 2016,  pp. 136-143.
    [42] Gao, W.-Y., P.J. Quinn, and Z.-W. Yu, "The role of sterol rings and side chain on the structure and phase behaviour of sphingomyelin bilayers." Molecular Membrane Biology, VOl  25, 2008,  pp. 485-497.
    [43] Zhao, L., et al., "Lanosterol reverses protein aggregation in cataracts." Nature, VOl  523, 2015,  pp. 607-611.
    [44] Shanmugam, P.M., et al., "Effect of lanosterol on human cataract nucleus." Indian journal of ophthalmology, VOl  63, 2015,  pp. 888.
    [45] Cournia, Z., G.M. Ullmann, and J.C. Smith, "Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study." The journal of physical chemistry B, VOl  111, 2007,  pp. 1786-1801.
    [46] Makley, L.N., et al., "Pharmacological chaperone for α-crystallin partially restores transparency in cataract models." Science, VOl  350, 2015,  pp. 674-677.
    [47] Pan, J., S. Tristram-Nagle, and J.F. Nagle, "Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation." Physical Review E, VOl  80, 2009,  pp. 021931.
    [48] Ifeanyi, F. and L. Takemoto, "Interaction of lens crystallins with lipid vesicles." Experimental eye research, VOl  52, 1991,  pp. 535-538.
    [49] Datiles III, M.B., et al., "Longitudinal study of age-related cataract using dynamic light scattering: loss of α-crystallin leads to nuclear cataract development." Ophthalmology, VOl  123, 2016,  pp. 248-254.
    [50] Coskun, O., "Separation techniques: chromatography." Northern clinics of Istanbul, VOl  3, 2016,  pp. 156.
    [51] Markossian, K.A., et al., "Mechanism of thermal aggregation of yeast alcohol dehydrogenase I: role of intramolecular chaperone." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl  1784, 2008,  pp. 1286-1293.
    [52] Stetefeld, J., S.A. McKenna, and T.R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences." Biophysical reviews, VOl  8, 2016,  pp. 409-427.
    [53] Kelly, S.M., T.J. Jess, and N.C. Price, "How to study proteins by circular dichroism." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl  1751, 2005,  pp. 119-139.
    [54] Dodero, V.I., Z.B. Quirolo, and M.A. Sequeira, "Biomolecular studies by circular dichroism." VOl, 2011.
    [55] Heller, W.T. and P.A. Zolnierczuk, "The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl  1861, 2019,  pp. 565-572.
    [56] Huang, H.W., "Action of antimicrobial peptides: two-state model." Biochemistry, VOl  39, 2000,  pp. 8347-8352.
    [57] Miles, A.J. and B.A. Wallace, "Circular dichroism spectroscopy of membrane proteins." Chemical Society Reviews, VOl  45, 2016,  pp. 4859-4872.
    [58] Mao, D., E. Wachter, and B. Wallace, "Folding of the mitochondrial proton adenosine triphosphatase proteolipid channel in phospholipid vesicles." Biochemistry, VOl  21, 1982,  pp. 4960-4968.
    [59] Santhoshkumar, P. and K.K. Sharma, "Identification of a region in alcohol dehydrogenase that binds to α-crystallin during chaperone action." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl  1598, 2002,  pp. 115-121.
    [60] Feigin, L. and D.I. Svergun, Structure analysis by small-angle X-ray and neutron scattering. Vol. 1. 1987: Springer
    [61] Guinier, A., X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. 1994: Courier Corporation
    [62] Engelman, D.M., "Lipid bilayer structure in the membrane of Mycoplasma laidlawii." Journal of Molecular Biology, VOl  58, 1971,  pp. 153-165.
    [63] Narayanan, T., J. Gummel, and M. Gradzielski, Probing the self-assembly of unilamellar vesicles using time-resolved SAXS, in Advances in planar lipid bilayers and liposomes:  Elsevier, 2014. p. 171-196.
    [64] Su, C.-J., et al., "Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl  1828, 2013,  pp. 528-534.
    [65] Carrotta, R., et al., "Small angle X-ray scattering sensing membrane composition: the role of sphingolipids in membrane-amyloid β-peptide interaction." Biology, VOl  11, 2021,  pp. 26.
    [66] Su, C.-J., et al., "Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning." Physical Chemistry Chemical Physics, VOl  20, 2018,  pp. 26830-26836.
    [67] Brzustowicz, M.R. and A.T. Brunger, "X-ray scattering from unilamellar lipid vesicles." Journal of applied crystallography, VOl  38, 2005,  pp. 126-131.
    [68] Pabst, G., et al., "Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data." Physical Review E, VOl  62, 2000,  pp. 4000.
    [69] Gilles, R., U. Keiderling, and A. Wiedenmann, "Silver behenate powder as a possible low-angle calibration standard for small-angle neutron scattering." Journal of applied crystallography, VOl  31, 1998,  pp. 957-959.
    [70] Huang, T., et al., "X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard." Journal of applied crystallography, VOl  26, 1993,  pp. 180-184.
    [71] Chang, Y.-Y.,et al., “Conformational changes of -crystallin protein induced by heat stress.” International Journal of Molecular Sciences, VOl 23, 2022, pp. 9347.
    [72] 劉諭庭:〈細胞膜媒介麥角固醇與 α-crystallin 的作用〉。碩士論文,國立中央大學,民國 111 年 6 月。
    [73] Ludtke, S., K. He, and H. Huang, "Membrane thinning caused by magainin 2." Biochemistry, VOl 34, 1995, pp. 16764-16769.
    [74] Chen, F.-Y., M.-T. Lee, and H.W. Huang, "Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation." Biophysical journal, VOl 84, 2003, pp. 3751-3758.

    QR CODE
    :::