| 研究生: |
劉學樺 Hsueh-hua Liu |
|---|---|
| 論文名稱: |
由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性 To evaluate frictional characteristics of basal décollement fault with the fault gouge under different normal stress and velocity of rotary shear tests |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 低速-高速旋剪試驗 、斷層泥 、基底滑脫面 、加積岩楔 、正向應力 |
| 外文關鍵詞: | Low-high rotary shear experiment, fault gouge, basal décollement, accretionary wedge, normal stress |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於薄皮逆衝理論,基底滑脫面與岩楔本身強度控制了加積岩楔之幾何形貌,本研究將探討基底滑脫面之摩擦特性。因深部基底滑脫面之剪動材料取樣不易,本研究乃針對台灣中部基底滑脫面分支斷層-雙冬斷層地表露頭進行斷層泥取樣,以作為基底滑脫面剪動材料之代表試體。利用為現地含水量之重模試體,於不同正向應力、轉速條件下進行旋剪試驗,探討斷層泥於不同岩覆與剪動速度下摩擦特性之變化趨勢與差異,並將其結果推衍至基底滑脫面之摩擦行為。研究結果指出,旋剪速度小於1 m/s之試驗均呈現位移強化;而旋剪速度1 m/s之試驗則呈現位移弱化,當速度越快時其穩態摩擦係數( )將越低,此趨勢代表基底滑脫面之剪力強度將隨剪動速度增加而降低(即速度弱化)。而於10-1與10-2 m/s之速度條件、正向應力介於0.5~2.5 MPa範圍內, 變化不明顯。換言之,於本研究應力範圍內所對應之加積岩楔厚度變化,對基底滑脫面摩擦係數影響有限。另外,根據微觀組構之觀察發現,旋剪速度1 m/s (較接近同震時斷層剪動速度)之試體,其於旋轉端處Y剪切面上方區域,顆粒粒徑大多較小(<0.004 mm),且此一區域發現部分摩擦融熔(partial frictional melting)現象,此現象伴隨著摩擦係數隨位移弱化之情形出現,因此,基底滑脫面於同震時摩擦行為可能與間震時期相當不同。微觀剪切構造觀察結果發現,正向(軸向)應力由0.5 MPa增加至2.5 MPa,R1剪切面、Y剪切面與P葉理之延續性亦隨之增加,此一結果暗示,加積楔厚度可能控制基底滑脫面微觀剪切構造之發育,因剪切構造可能影響孔隙壓力消散過程,故可能間接影響加積岩楔基底滑脫面之強度。
Basal décollement and wedge strength domain the geometry of accretionary wedge based on thin-skin thrust theory. Therefore, we will research the frictional characteristic of décollement fault that to understand the geometry of accretionary wedge. Due to the sampling of décollement fault was hardly, there had not been to research representative specimen for frictional experiments in the past. We use Shuangdong fault gouge to substitute basal décollement material, because Shuangdong fault is the main branch of basal décollement in central Taiwan. To understand the gouge frictional characteristics in different depths and slip velocity, we use remolded gouge sample with different normal stress and velocity to conduct rotatory shear experiments, and in-situ water content used with all tests. And the results can evaluate basal décollement mechanical behavior. Research results indicate that, when the rotating shear velocity is less than 1 m/s of the test, it’s showed slip strengthening. While 1 m/s rotating shear test result shows slip weakening. We also find out that the steady-state friction coefficient( ) will decrease with increasing velocity(velocity weakening), when the velocity of rotating shear is within the range of 10-4~1 m/s. This result representing the basal décollement strength will be reduced as the velocity increases. change slightly in the same velocity(10-1、10-2 m/s), normal stress between 0.5~2.5 MPa. In other words, the variation thickness of the accretionary wedge impact limited frictional coefficient on the basal décollement. In addition, according to the observation of the microstructure, found that rotating shear velocity 1 m/s(closer to the velocity of coseismic) of the specimen, there are almost all extremely fine grained(<0.004 mm) develop above Y-shear(along rotational side). This area has discovered partial frictional melting phenomenon, which accompany with the displacement weakening of frictional coefficient. Therefore, the frictional behavior of basal décollement may be quit different between coseismic and interseismic condition. Microstructure comparisons R1-shear, Y-shear, and P-foliation continuities are mainly controlled by normal stress(from 0.5 MPa increased to 2.5 MPa). It implies that, the thickness of accretionary wedge is possible to control the basal décollement’s development of microstructure. Microstructure may affect the pore pressure dissipation process, so the thickness of the accretionary wedge may indirectly affect the strength of the basal décollement.
[1]Suppe, J., “Geometry and kinematics of fault-bend folding”, American Journal of Science, Vol. 283, pp. 684-721, 1983.
[2]Yue, L.F., “Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures”, Department of Geosciences, Princeton University, Ph.D. Dissertation, 2007.
[3]Dahlen, F.A., “Critical taper model of fold-and-thrust belts and accretionary wedges”, Annual Review of Earth and Planetary Sciences, Vol. 18, pp. 55-99, 1990.
[4]Tsutsumi, A., and Shimamoto, T., “High-velocity frictional properties of gabbro”, Geophysical Research Letters, Vol. 24, No.6, pp. 699-702, 1997.
[5]Davis, D., Suppe, J., and Dahlen, F.A., “Mechanics of fold-and-thrust belt and accretionary wedges”, Journal of Geophysical Research, Vol. 88, No. B2, pp. 1153-1172, 1983.
[6]Dahlen, F.A., Suppe, J., and Davis, D., “Mechanics of fold-and-thrust belt and accretionary wedges: Cohesive coulomb theory”, Journal of Geophysical Research, Vol. 89, No. B12, pp. 10087-10101, 1984.
[7]楊哲銘,「非線性破壞準則之臨界楔模型」,國立中央大學,碩士論文,2009年。
[8]Hoek, E., Torres, C.T., and Corkum, B., Hoek-Brown Failure Criterion, 2002 Edition, Proceedings of the North American Rock Mechanics Society Meeting, Toronto, 2002.
[9]Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., “Fault lubrication during earthquakes”, Nature, Vol. 471, pp. 494-498, 2011.
[10]den Hartog, S.A.M., Peach, C.J., Winter, D.A.M.de, Spiers, C.J., and Shimamoto, T., “Frictional properties of megathrust fault gouges at low sliding velocities: New data on effects of normal stress and temperature”, Journal of Structural Geology, Vol. 38, pp. 156-171, 2012.
[11]Shimamoto, T., and Logan J.M., “Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone”, Tectonophysics, Vol. 75, pp. 243-255, 1981.
[12]Dieterich, J.H., “Time-dependent friction and the mechanics of stick-slip”, Pure and Applied Geophysics, Vol. 116, pp. 790-806, 1978.
[13]Dieterich, J.H., “Experimental results and constitutive equations”, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2161-2168, 1979.
[14]Togo, T., Shimamoto, T., Ma, S., and Hirose, T., “High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake”, Earthquake Science, Vol. 24, pp. 267-281, 2011.
[15]Hirose, T., and Shimamoto, T., “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting”, Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005.
[16]Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and Shimamoto, T., “Natural and experimental evidence of melt lubrication of faults during earthquakes”, Science, Vol. 311, pp. 647-649, 2006.
[17]Nielsen, S., Di Toro, G., Hirose, T., and Shimamoto, T., “Frictional melt and seismic slip”, Journal of Geophysical Research, Vol. 113, B01308, doi:10.1029/2007JB005122, 2008.
[18]Sibson, R.H., “Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanism for partial or total stress relief”, Nature, Vol. 243, pp. 66-68, 1973.
[19]Lachenbruch, A.H., “Frictional heating, fluid pressure, and the resistance to fault motion”, Journal of Geophysical Research, Vol. 85, pp. 6097-6112, 1980.
[20]Mase, C.W., and Smith, L., “Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault”, Journal of Geophysical Research, Vol. 92, pp. 6249-6272, 1987.
[21]Wibberley, C.A.J., and Shimamoto, T., “Earthquake slip weakening and asperities explained by thermal pressurization”, Nature, Vol. 436, pp. 689-692, 2005.
[22]Noda, H., and Shimamoto, T., “Thermal pressurization and slip-weakening distance of a fault: an example of the Hanaore fault, Southwest Japan”, Bulletin of the Seismological Society of America, Vol. 95, pp. 1224-1233, 2005.
[23]Rice, J.R., “Heating and weakening of faults during earthquake slip”, Journal of Geophysical Research, Vol. 111, B05311, doi:10.1029/2005JB004006, 2006.
[24]陳宥任,「快速滑動塊體滑動面正向應力與超額移動距離」,國立中央大學,碩士論文,2012年。
[25]Tanikawa, W., and Shimamoto, T., “Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake”, Journal of Geophysical Research, Vol. 114, B01402, doi:10.1029/2008JB005750, 2009.
[26]Higgins, M. W., Cataclastic rocks, U.S. Geol. Survey Prof., 1971.
[27]廖卿妃,「車籠埔斷層斷層岩之變形作用與黏土礦物分析」,國立中央大學,碩士論文,2003年。
[28]Sibson, R.H., “Fault rocks and fault mechanisms”, Geological Society of London, Vol. 133, pp. 191-213, 1977.
[29]Wu, F.T., “Mineralogy and Physical Nature of Clay Gouge”, Pure & Appl. Geophysics, Vol. 116, pp. 655-689, 1978.
[30]Terzaghi K., and Peck, R.B., Soil Mechanics in Engineering Practice, 2nd Edition, John Wiley & Sons, New York, pp. 729, 1967.
[31]Rutter, E.H., Maddock, R.H., Hall, S.H., and White, S.H., “Comparative microstructures of natural and experimentally produced clay bearing fault gouge”, Pure & Appl. Geophysics, Vol. 24, pp. 3-30, 1986.
[32]Logan, J.M., Friedman, M., Higgs, N., Dengo, C., and Shimamoto, T., “Experimental studies of simulated fault gouge and their application to studies of natural fault zone”, Proceedings of Conference VIII: Analysis of actual fault zones in bedrock, Open-File Report-U.S. Geological Survey, pp. 305-343, 1979.
[33]Kitajima, H., Chester, J.S., Chester, F.M., and Shimamoto, T., “High‐speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution”, Journal of Geophysical Research, Vol. 115, B08408, dio:10.1029/2009JB007038, 2010.
[34]Shimamoto, T., and Togo T., “Earthquakes in the lab”, Science, Vol. 338, No. 54, DOI: 10.1126/science.1227085, 2012.
[35]黃鑑水、謝凱旋和陳勉銘,「台灣地質圖:埔里」,經濟部中央地質調查所,2000年。
[36]張徽正、林啟文和盧詩丁,「九二一地震地質調查報告」,經濟部中央地質調查所,2000年。
[37]Tsutsumi, A., Shimamoto, T., “Frictional properties of monzodiorite and gabbro during seismogenic fault motion”, Geological Society of Japan, Vol. 102, pp. 240-248, 1996.
[38]沈建志,「斷層泥力學特性之初步研究」,國立中央大學,碩士論文,1995年。
[39]Johns, W.D., Grim, R.E. and Bradley, W.F., “Quantitative estimations of clay minerals by diffraction methods”, Journal of Sedimentary Petrology, Vol. 24, No. 4, pp. 242-251, 1954.
[40]Boutareaud, S., Calugaru, D.G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., and Shimamoto, T., “Clay-clast aggregates: a new textural evidence for seismic fault sliding?”, Geophysical Research Letters, Vol 35, L05302, doi:10.1029/2007GL032554, 2008.
[41]Boutareaud, S., Boullier, A.M., Andreani, M., Calugaru, D.G., Beck, P., Song, S.R., and Shimamoto, T., “Clay-clast aggregates in gouges: New textural evidence for seismic faulting”, Journal of Geophysical Research, Vol. 115, B02408, doi:10.1029/2008JB006254, 2010.
[42]Ferri, F., Di Toro, G., Hirose, T., and Shimamoto, T., “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol. 22, No. 5, pp. 347-353, 2010.
[43]Kopf, A., and Brown, K.M., “Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts”, Marine Geology, Vol. 202, pp. 193-210, 2003.
[44]Ikari, M.J., Saffer, D.M., and Marone, C., “Frictional and hydrologic properties of clay-rich fault gouge”, Journal of Geophysical Research, Vol. 114, B05409, doi:10.1029/2008JB006089, 2009.
[45]Kuo, L.W., Song, S.R., Yeh, E.C., Chen, H.F., “Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications”, Geophysical Research Letters, Vol. 36, L18306, doi:10.1029/2009GL039269, 2009.