| 研究生: |
張若柔 Ruoh-Rou Chang |
|---|---|
| 論文名稱: |
基於PQ:PMMA VBG回饋半導體雷射之 FMCW雷射雷達測距系統研究 Development of the FMCW LiDAR system based on a diode laser feedback with PQ:PMMA VBG |
| 指導教授: |
鍾德元
Te-yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 體積布拉格光柵 、外腔半導體雷射 、頻率調製連續波 、雷射雷達 |
| 外文關鍵詞: | Volume Bragg Grating, External Cavity Diode Laser, Frequency Modulated Continuous Wave, LiDAR |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出使用自製PQ:PMMA VBG作為半導體雷射外部共振腔反射鏡,達成頻率調制連續波(FMCW)雷射雷達系統。首先,將自製感光高分子光學壓克力PQ:PMMA以532 nm綠光雷射進行曝光後,將PQ:PMMA材料製作成反射式體積布拉格光柵(VBG),回饋1064 nm半導體雷射後,達成單縱模雷射輸出。再將自製PQ:PMMA VBG固定於壓電制動元件(PZT)上,以訊號產生器供給電壓調制PZT產生長度變化,調控半導體雷射外部共振腔的腔長,以此調變此單縱模半導體雷射之輸出波長,達到FMCW雷射發射端架構。本研究之距離量測是以類似麥克森干涉儀的架構,量測兩道反射光相干涉產生的拍頻(Beat Frequency)訊號來計算距離。本研究之FMCW LiDAR系統最適宜量測距離約為五至九公尺,而系統量測之距離標準差約在十公分內。
An external cavity diode laser(ECDL) feedback with a homemade PQ:PMMA VBG is served as the tunable laser of a FMCW LiDAR system.
Photopolymer material PQ:PMMA is exposed by a 532 nm laser using two-beam interference scheme to achieve a volume Bragg grating(VBG). The VBG is used to feedback a 1064 nm diode laser to reach single longitudinal mode laser output. The VBG is attached to a PZT controlled by a function generator to modulate the length of the external cavity, and thus made a FMCW laser source. The FMCW range finding system is similar to a Michelson interferometer. Two reflected beam will interfere on the sensor plane. The beat frequency is measured and the object distance can be calculated. In this thesis, the optimum measurement distance of our FMCW LiDAR system is approximately 5 m to 9 m, while the standard deviation of the system measurement is within approximately 10 cm.
[1] 向敬成, 雷達系統. 五南出版社, 2004, p. 524.
[2] C. P. A. Mohan, and T. Poggio, "Example-Based Object Detection in Images by Components," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 349-361, 2001.
[3] E. S. B. Leibe, and B. Schiele, "Pedestrian Detection in Crowded Scenes," IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 878—885, 2005.
[4] W.-H. Lo, "Realization of High Accuracy FMCW Level Gauge," M.S. thesis, Mechanical Engineering, National Chiao Tung University, 2009.
[5] G. S. M. I. Thorsten Luettel, Michael Himmelsbach, and Hans-Joachim Wuensche, "Autonomous Ground Vehicles - Concepts and a Path to the Future," Proceedings of the IEEE vol. 100, pp. 1831-1839, May 13th 2012.
[6] Y. Lin, "Mini-UAV-Borne LIDAR for Fine-Scale Mapping," IEEE Geoscience and Remote Sensing Letters, vol. 8, pp. 426-430, 2011.
[7] J.-F. Lalonde, "Terrain characterization and classification with a mobile robot," Journal of Field Robotics, vol. 23, p. 839, 2006.
[8] M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla¨, and M. Rioux, "Laser ranging: a critical review of usual techniques for distance measurement," Optical Engineering, vol. 40, no. 1, 2000.
[9] J. M. Risto Myllylädag, Juha Kostamovaaradag, Antti Mäntyniemidag and Gerd-Joachim Ulbrich, "Imaging distance measurements using TOF lidar Mesures " Journal of Optics, vol. 29, pp. 188-193, 1998.
[10] M. L. G.Percheta, T.Boschb, "Error analysis of phase-shift laser range finder with high-level signal," Sensors and Actuators A: Physical, vol. 62, no. 1-3, pp. 534-538, 1997.
[11] J. Zheng, "Optical frequency-modulated continuous-wave interferometers," Applied Optics, vol. 45, no. 12, pp. 2723-2730, 20 April 2006.
[12] T. H. Koichiro Nakamura, Masato Yoshida, Toshiharu Miyahara, and Hiromasa Ito, "Optical Frequency Domain Ranging by a Frequency-Shifted Feedback Laser," IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 36, pp. 308-309, 2000.
[13] J. E. A. R. D. Massaroa, J. D. Nelsona, J. D. Edwards, "A COMPARATIVE STUDY BETWEEN FREQUENCY-MODULATED CONTINUOUS WAVE LADAR AND LINEAR MODE LIDAR," The International Archives of the Photogrammetry, vol. XL-1, no. Remote Sensing and Spatial Information Sciences, pp. 233-239, 17 – 20 November 2014.
[14] S. Yiou, F. Balembois, P. Georges, and J.-P. Huignard, "Improvement of the spatial beam quality of laser sources with an intracavity Bragg grating," Optics Letters, vol. 28, no. 4, pp. 242-244, 02/15 2003.
[15] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Optics Letters, vol. 29, no. 16, pp. 1891-1893, 08/13 2004.
[16] T. McComb, V. Sudesh, and M. Richardson, "Volume Bragg grating stabilized spectrally narrow Tm fiber laser," Optics Letters, vol. 33, no. 8, pp. 881-883, 04/15 2008.
[17] F. Delorme, S. Slempkes, P. Gambini, and M. Puleo, "Fast tunable 1.5 μm distributed Bragg reflector laser for optical switching applications," Electronics Letters, vol. 29, no. 1, pp. 41-43Available: http://digital-library.theiet.org/content/journals/10.1049/el_19930027
[18] D. Wandt, M. Laschek, A. Tünnermann, and H. Welling, "Continuously tunable external-cavity diode laser with a double-grating arrangement," Optics Letters, vol. 22, no. 6, pp. 390-392, 03/15 1997.
[19] D. Nordin, "Optical frequency modulated continuous wave (FMCW) range and velocity measurements," Docroral Thesis Docroral Thesis, Department of Computer Science and Electrical Engineering, Lulea University of Technology, 2004.
[20] K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, "Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Optical Engineering, vol. 42, no. 5, pp. 1390-1396, 2003.
[21] V. Reddy. (2015). Death of Pulsed LiDAR: Gieger Mode LiDAR vs FMCW LADAR. Available: https://www.linkedin.com/pulse/death-pulsed-lidar-gieger-mode-vs-fmcw-ladar-vasanth-reddy
[22] B. C. a. I. P. Giles, "Frequency Modulated Heterodyne Optical Fiber Sagnac Interferometer," IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 4, pp. 536 - 539, Apr. 1982.
[23] A. D. M.-C. Amann, "Frequency-modulated continuous-wave (FMCW) lidar with tunable twin-guide laser diode," in SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, 1994, vol. 2271, p. 9: SPIE.
[24] D. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, "Linear FMCW laser radar for precision range and vector velocity measurements," MRS Online Proceedings Library Archive, vol. 1076, 2008.
[25] F. M. Müller, G. Böttger, C. Janeczka, N. Arndt-Staufenbiel, H. Schröder, and M. Schneider-Ramelow, "Frequency-modulated laser ranging sensor with closed-loop control," in SPIE OPTO, 2018, vol. 10539, p. 6: SPIE.
[26] G. B. Fabian M. Müller , Christian Janeczka , Norbert Arndt-Staufenbiel , Henning Schröder , Martin Schneider-Ramelow "Frequency-modulated laser ranging sensor with closed-loop control," SPIE OPTO, vol. 10539, no. Photonic Instrumentation Engineering V, 22 February 2018.
[27] 詹偉平, "以錐形半導體放大器為增益介質、外腔VBG回饋半體雷射研究," 國立中央大學, 2010.
[28] 陳傳文, "以PQ:PMMA製作反射式體積布拉格光柵回饋錐形半導體放大器之窄波長雷射輸出研究," 國立中央大學, 2016.
[29] O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High-frequency Bragg gratings in a photothermorefractive glass," Optics Letters, vol. 25, no. 23, pp. 1693-1695, 12/01 2000.
[30] O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Applied Optics, vol. 38, no. 4, pp. 619-627, 02/01 1999.
[31] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," 2005, vol. 5711, pp. 166-176.
[32] P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection," Optics Express, vol. 16, no. 13, pp. 9507-9512, 06/23 2008.
[33] 朱士維. (2012). Laser resonator. Available: http://www.lasertech.tw/laser_noun.php?g_id=IyQlKiYlMjYlXiQqJio=
[34] E. Hecht, Optics. Reading, Mass.: Addison-Wesley, 2002.
[35] Y.-N. Hsiao, W.-T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Optical Engineering, vol. 43, no. 9, pp. 1993-2002, 2004.
[36] S. Liu et al., "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," Journal of the Optical Society of America B, vol. 28, no. 11, pp. 2833-2843, 11/01 2011.