| 研究生: |
林侑鋌 Yu-ting Lin |
|---|---|
| 論文名稱: | Thermal stability of supersaturated carbon incorporation in silicon |
| 指導教授: |
溫偉源
Wei-yen Woon |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 過飽和矽碳合晶 |
| 外文關鍵詞: | supersaturated carbon incorporation in silicon |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於碳原子與矽原子的大小不匹配,矽碳合金(Si:C)常被應用於n型金氧半場效電晶體(n-MOSFET)的源極(source)與汲極(drain)來對載子通道產生一個張應變(tensile strain),藉此來提升電子在通道中的漂移率(mobility)。此外,碳原子的參雜也能有效的調整矽基板的能帶結構以及阻止其他參雜原子的暫態增強擴散效應(transient enhanced diffusion)。然而,較高的張應變能也限制了碳原子在矽基板中的溶解度且導致了較低的熱穩定性。先前的研究指出,矽基板中碳原子的濃度越高則系統的熱穩定性就越低(應變鬆弛)。應變鬆弛(strain relaxation)主要有四種途徑:沉澱(precipitation)、錯位(dislocation)、去活化(deactivation)和體積補償(volume compensation)。在這個實驗中,我們使用兩種不同濃度的矽碳合金來測試與驗證上述的結果。矽碳合金是以離子佈植及固相磊晶成長(solid phase epitaxial regrowth)的方式來製作,其濃度最大值分別為0.813% (CL系統)及1.131%(CM系統)。我們藉由高解析度X光繞射儀(HRXRD)與動態模擬(kinematic simulation)來研究系統的張應變隨著熱能增加的進展及雜質的溶解度。我們也藉由傅立葉轉換紅外光譜儀(FTIR)來研究系統應變鬆弛的物理機制。我們發現在CL與CM系統中,在熱退火(post-annealing)的初始階段系統的總張應變都會有明顯的增加。此應變增加的行為是一個新穎的物理現象,它可以被歸因於間隙碳原子的再活化效應(re-incorporation effect)。隨後我們也發現系統的張應變會隨著熱退火時間的增長或熱退火溫度的增加逐漸的鬆弛。然而,此熱退火條件卻遠低於先前研究(需高溫加熱並以β-SiC沉澱析出的形式來釋放張應力)的條件。傅立葉轉換紅外光譜儀的量測結果顯示出CL系統和CM系統的張應變鬆弛的原因並非源於晶格位置上的碳原子被置換或β-SiC的形成,而是源於晶格位置上的碳原子能有效的吸引與限制住表面氧化效應產生的大量間隙矽原子,進而使體積增大應變鬆弛。藉由動態模擬我們也發現間隙碳原子的量與張應變鬆弛是有關連的,這代表著間隙碳原子在張應變鬆弛的過程中扮演著重要的角色。根據上述,我們認為系統的張應變鬆弛主要是源於晶格位置上的碳原子較佳的吸引及限制間隙原子的能力。此外,我們也確認矽基板中碳原子的濃度越高則其熱穩定性就越低。
Due to large size mismatch between carbon (C) and silicon (Si), silicon carbon alloy (Si:C) is used as the stressors in the source and drain (S/D) of n-type metal-oxide-semiconductor field effect transistor (n-MOSFET) to improve the electron mobility. In addition, it was shown that the incorporation of C in Si substrate leads to band structure modification and reduction in dopant transient enhanced diffusion. Nonetheless, the large strain energy also limits the solubility of C in Si substrate and causes lower thermal stability. Previous researches suggested that higher C concentration in Si substrate usually results in lower thermal stability by strain relaxation. There are four main pathways of strain relaxation such as precipitation, dislocation, deactivation and volume compensation. In this experiment, we used two concentrations of carbon-implanted silicon to test the models above. The peaks of their concentration are 0.813% (CL system) and 1.131% (CM system) respectively. After the thermal annealing treatment at 635oC for full recrystallization, post-annealing treatments were performed to study the thermal stability. High resolution X-ray diffractometer (HRXRD) rocking curve measurement and kinematic simulation were used to determine the strain evolution and impurity solubility layer by layer. Furthermore, Fourier transform infrared spectrometer (FTIR) observation was used to investigate the mechanism of strain relaxation. We found that the strain increased at the initial stage of post-annealing treatment for both CL and CM systems. It is a novel phenomenon and can be ascribed to the occurrence of C re-incorporation. We also found that even though the thermal budget applied is far below the threshold for β-SiC formation, almost complete strain relaxation is found without significantly substitutional carbon (Csub) loss. FTIR results revealed the strain relaxation is related to volume compensation by Csub-interstitial complex formation through oxidation injection of interstitial. By multilayer HRXRD kinematical simulation, we found correlation of the enhanced strain relaxation to interstitial C amount, implying interstitial C also play an important role in the observed strain relaxation during post-annealing treatment. We therefore suggested a model for the observed strain relaxation based on the good interstitial gettering capability of carbon. Furthermore, we also make sure higher C concentration in Si substrate usually results in lower thermal stability.
[1] R. Duffy et al. “Boron uphill diffusion during ultrashallow junction formation ”, Appl. Phys. Lett. 82, 3647 (2003)
[2] S. Ruffell, I. V. Mitchell, and P. J. Simpson, “ Solid-phase epitaxial regrowth of amorphous layers in Si (100) created by low-energy, high-fluence phosphorus implantation”, J. Appl. Phys. 98, 083522 (2005)
[3] P. Grudowski et al. “ An embedded silicon-carbon S/D stressor CMOS integration on SOI with enhanced carbon incorporation by laser spike annealing”, IEEE SOI Conf. Proc. P.17 (2007)
[4] Zhibin Ren et al. “ On implementation of embedded phosphorus-doped SiC stressors in SOI nMOSFETs”, Tech. Dig. – Int. Electron Devices Meet, P.172 (2008)
[5] E. R. Hsieh and Steve S. Chung, “The procimity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors” Appl. Phys. Lett. 96, 093501 (2001)
[6] Shao-Ming Koh, Ganesh S. Samudra and Yee-Chia Teo, “Carrier transport in strain N-channel field effect transistors with channel proximate silicon-carbon source/drain stressors”, Appl. Phys. Lett. 98, 03211 (2010)
[7] K. C. Ku et al. “Effects of germanium and carbon coimplants on phosphorus diffusion in silicon” Appl. Phys. Lett. 89, 112104 (2006)
[8] L. A. Edelman et al. “Effect of carbon codoping on boron diffusion in amorphous silicon” Appl. Phys. Lett. 93, 072107 (2008)
[9] H. J. Osten et al. “Substitutional versus interstitial carbon incorporation during pseudomorphic growth of Si1-yCy on Si (100)”, J. Appl. Phys. 80, 6711 (1996)
[10] H. J. Osten et al. “Substitutional carbon incorporation in epitaxial Si1-yCy alloys on Si (100) grown by molecular beam epitaxy”, Appl. Phys. Lett. 74,836 (1999)
[11] S. Y. Park et al. “Carbon incorporation pathways and lattice sites in Si1-yCy alloys grown on Si (100) by molecular beam epitaxy”, J. Appl. Phys. 91, 5716 (2002)
[12] T. O. Mitchell, J. L. Hoyt and J. F. Gibbons, “Substitutional carbon incorporation in epitaxial Si1-yCy layers grown by chemical vapor deposition”, Appl. Phys. Lett. 71,12 (1997)
[13] N.Cherkashin et al. “On the influence of elastic strain on the accommodation of carbon atoms into substitutional sites in strained Si:C layers grown on Si substrates” Appl. Phys. Lett. 94, 141910 (2009)
[14] J. W. Strane et al. “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy”, J. Appl. Phys. 79, 637 (1996)
[15] S. D. Kim, C. M. Park and J. C. S. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS” IEEE Trans. Electron Devices, 49, 1748 (2002)
[16] Shao-Ming Koh et al. “Silicon-carbon formed using cluster-carbon implant and laser-induced epitaxy for application as source/drain stressors in strained n-channel MOSFETs”, ECS, 156, P. H361 (2009)
[17] J. W. Strane et al. “Precipitation and relaxation in strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 76, 3656 (1994)
[18] A. R. Powell, F. K. LeGoues and S. S. lyer, “Formation of -SiC nanocrystals by the relaxation of Si1-yCy random alloy layers”, Appl. Phys. Lett. 94,324 (1994)
[19] H. J. Osten et al. “Strain relaxation in tensile-strained Si1-yCy layers on Si (001)”, Semicond. Sci. Technol. 11, 1678 (1996)
[20] M. S. Goorsky et al. “Thermal stability of Si1-yCy/Si strained layer superlattices”, Appl. Phys. Lett. 60, 2758 (1992)
[21] Yong Jeong KIM et al. “The loss kinetics of substitutional carbon in Si1-yCy regrown by solid phase epitaxy”, Jpn. J. Appl. Phys. 40, 773 (2001)
[22] G. G. Fischer et al. “Investigation of the high temperature behavior of strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 77, 1934 (1994)
[23] Y. T. Chuang, S. H. Wang and W. Y. Woon, “Effect of impurities on thermal stability of pseudomorphically strained Si:C layer” Appl. Phys. Lett. 98, 141918 (2011)
[24] J. F. Sage, W. B. Carter and M. J. Aziz, “Morphological instability of growth fronts due to stress-induced mobility variations” Appl. Phys. Lett. 77, 516 (2000)
[25] C. Guedj et al. “Precipitation of -SiC in Si1-yCy alloy”, J. Appl. Phys. Communications, 84, 4631 (1998)
[26] The stopping and range of ions in matter (SRIM) simulation, http://www.srim.org/
[27] W. E. Beadle, J. C. C. Tsai and R. D. Plummer, Quick reference manual for silicon integrated circuit technology, Bell Telephone Laboratories (1985)
[28] G. L. Olson and J. A. Roth, “Kinetics of solid phase crystallization in amorphous silicon”, Mater. Sci. Rep. 3, 1 (1998)
[29] W. Y. Woon et al. “Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth”, Appl. Phys. Lett. 97, 141906 (2010)
[30] R. C. Newman and J. B. Willis, “Vibrational absorption of carbon in silicon”, J. Phys. Chem. Solids 26, 373 (1965)
[31] P. Boucaud et al. “Photoluminescence of strained Si1-yCy alloys grown at low temperature”, Appl. Phys. Lett. 66, 70 (1995)
[32] W. J. Taylor, T. Y. Tan and U. Gösele, “Carbon precipitation in silicon: Why is it so difficult?”, Appl. Phys. Lett. 62, 3336 (1993)