跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張佳仁
Chia-Jen Chang
論文名稱: 三維積體電路的微凸塊分配與晶粒間繞線之研究
Micro-Bump Assignment and Inter-Die Routing for 3D ICs
指導教授: 陳泰蓁
Tai-Chen Chen
劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 54
中文關鍵詞: 微凸塊分配三維積體電路繞線
外文關鍵詞: Routing, Micro-Bump Assignment, 3D ICs
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代積體電路設計中,隨著製程技術的進步,同一塊晶片中可以容納的元件數目愈來愈多,種類愈趨多樣化,晶片的面積也愈來愈小。在效能的部份,整體線長對效能的影響很大,較短的線長可以給系統帶來較佳的延遲時間,同時功率的消耗也會比較小。綜合以上的優點,三維積體電路(3D IC)的架構被提出來,對於同樣效能的製程而言,三維積體電路具有較低的技術成本,是目前很熱門的技術。
    在這個研究中,運用了整數線性規畫(Integer Linear Programming)的方法,使用兩個階段的微凸塊(micro bump)訊號配置(signal assignment),以及不規則陣列的重新分配層(redistributed layer, RDL)繞線,針對分布於三維積體電路內,做層與層之間接點的繞線。首先,在繞線框內已被預先定義的陣列中,選擇不會造成繞線交越(crossing)的微凸塊,接下來電路繞線就被分為上下兩層,分別為上重新分配層(upper RDL)及下重新分配層(lower RDL)。以最短線長和沒有交越的情況為目標,分別對這兩層需要被連接的點做繞線,求出最理想的全域繞線(global routing)解。實驗結果顯示,在合理的執行時間內,我們的方法可以達到100%的可繞線度,同時也能得到理想的總線長。


    The three dimensional integrated circuit (3D IC) is an emerging technology. It has a great potential on alleviating the long interconnect problems and integrating heterogeneous components for System-on-Chip (SoC) or System-in-Package (SiP) by stacking multiple active layers together. The primary emphasis on 3D-IC routing is the interface issues across dies. To handle the interface issue of connections, the inter-die routing, which uses micro bumps and two RDLs (Re-Distribution Layers) to achieve the connection between adjacent dies, is adopted.
    In this thesis, we present an inter-die routing algorithm for 3D ICs with a pre-defined netlist. Our algorithm is based on integer linear programming (ILP) and adopts a two-stage technique of micro-bump assignment followed by irregular RDL routing. First, the micro-bump assignment selects suitable micro-bumps for the pre-defined netlist such that no crossing problem exists inside the bounding boxes of each net. After the micro-bump assignment, the netlist is divided into two sub-netlists, one is for the upper RDL and the other is for the lower RDL. Second, the irregular RDL routing determines minimum and non-crossing global paths for sub-netlists of the upper and lower RDLs individually. Experimental results show that our approach can obtain optimal wirelength and achieve 100% routability under reasonable CPU times.

    Abstract (Chinese) i Abstract ii Acknowledgement iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1 3D IC Technology ..................................................................................................... 1 1.1.1 Dies Stacking ……………………………………………………………… 2 1.1.2 Inter-strata Connection ……………………………………………………. 2 1.1.3 Interface Connection ……………………………………………………… 3 1.2 Problem Formulation ………………………………………………………………. 4 1.3 Our Contributions ………………………………………………………………….. 6 Chapter 2. Related Works 8 2.1 Redistributed Layer ………………………………………………………………… 8 2.2 Network-Flow-Based RDL Routing ……………………………………………….. 9 2.2.1 Basic Network Formulation ……………………………………………….. 12 2.2.2 Capacity Assignment and Node Construction …………………………….. 13 2.3 ILP-Based RDL Routing …………………………………………………………… 15 2.3.1 Integer Linear Programming ………………………………………………. 15 2.3.2 ILP Formulation …………………………………………………………… 16 2.4 Comparison Among Our And Related Works ……………………………………… 19 Chapter 3. Proposed Approach 21 3.1 Algorithm Overview ………………………………………………………………… 21 3.2 Micro-Bump Assignment …………………………………………………………… 22 3.3 Irregular RDL Routing ……………………………………………………………… 25 3.3.1 Routing Network Construction …………………………………………… 26 3.3.2 Basic ILP Formulation ……………………………………………………. 28 3.3.3 ILP Reduction …………………………………………………………….. 32 Chapter 4. Experimental Results 34 Chapter 5. Conclusions and Future Works 39 Bibliography 40

    [1] http://lpsolve.sourceforge.net/5.5/.
    [2] http://www.itri.org.tw.
    [3] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration” in Proceedings of the IEEE, Vol. 89, Issue 5, pp. 602--633, May 2000.
    [4] C. Chiang and S. Sinha, “The Road to 3D EDA Tool Readiness,” in Proceedings of ACM/IEEE Asia and South Pacific Design Automation Conference, pp. 429--436, 2009.
    [5] J. Cong, A. Jagannathan, Y. Ma, G. Reinman, J. Wei, and Y. Zhang, “An Automated Design Flow for 3D Microarchitecture Evaluation,” in Proceedings of ACM/IEEE Asia and South Pacific Design Automation Conference, pp. 384--389, 2006.
    [6] S. Das, A. Chandrakasan, and R. Reif, “Three-Dimensional Integrated Circuits: Performance, Design Methodology, and CAD Tools,” in Proceedings of IEEE Computer Society Annual Symposium on VLSI, pp. 13--18, 2003.
    [7] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A Network-Flow based RDL Routing Algorithm for Flip Chip Design,” in IEEE Transactions on Computer-Aided Design, Vol. 26, No. 8, pp. 1417--1429, August 2007.
    [8] J.-W. Fang and Y.-W. Chang, “Area-I/O Flip-Chip Routing for Chip-Package Co-Design,” in Proceedings of IEEE/ACM International Conference on Computer Aided Design, pp. 518--522, 2008.
    [9] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An Integer Linear Programming based Routing Algorithm for Flip-Chip Designs,” in IEEE Transactions on Computer-Aided Design, Vol. 28, No. 1, pp. 98--110, January 2009.

    QR CODE
    :::