| 研究生: |
余美儷 Mei-Li Yu |
|---|---|
| 論文名稱: |
低能量時脈儲存元件之分析、設計與量測 Analysis, Design and Measurement of Low-Energy Clocked Storage Elements |
| 指導教授: |
鄭國興
kuo-Hsing Cheng 周世傑 Shyh-Jye Jou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 漏電流控制 、低功率雙緣觸發正反器 、量測電路 |
| 外文關鍵詞: | leakage control, low power double edge triggered DFF, test circuit |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於可攜式電子產品的需求量增加以及其要求的效能提升,因此設計低功率消耗已成為積體電路設計重要理念。隨製程由微米進入奈米時代,觀察其漏電流對功率消耗之影響趨勢。利用結合準位轉換器與雙緣觸發正反器和應用雙臨界電壓元件之技巧,我們提出一個新的低功率正反器以及控制漏電流之設計。本論文中,我們提出一個新型且超低功率正反器,其功率消耗與其他的正反器相比至少降低了27%。並將其應用在管線式系統中,得以有效降低功率消耗。低功率正反器之模擬與量測結果是使用台積電0.13 微米1P8M CMOS 製程完成,最後我們以量測時序及模擬電流之結果為依據,證明我們提出的電路為低功率、高可靠
度之設計。
針對未來高速度、低面積、低功率、低雜訊之電路性能要求,我們實現晶片內可量測時脈儲存元件之精確延遲時間特性、功率消耗以及製造與估計內部電壓源抖動量值之電路設計。此架構具有4.3ps 的時間特性解析度及控制0.05V 之電壓源抖動雜訊,將此量測電路實現於聯電0.13 微米1P8M CMOS 製程,藉此證明我們提出的方法,能夠量測晶片內時脈儲存元件精準之時間特性、實際功率消耗以及估計電壓源抖動雜訊量值。
[1] www.Intel.com/design/ASICs, January 2002.
[2] K. Usami and M. Igarashi, “Low-power Design Methodology and Applications utilizing Dual Supply Voltages,” Proc. of Asia and South Pacific Design Automation Conference, pp. 123-128, Jan. 2000.
[3] F. Fallah, M. Pedram, ”Standby and Active Leakage Current Control and Minimization in CMOS VLSI Circuits,” IEICE Trans. on Electronics, Special Section on Low-Power LSI and Low-Power IP, vol.E88–C, pp. 509-519, Apr. 2005.
[4] W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J. J. Wortman, K. D. Meyer and A. Naem, “Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime,” IEEE Trans. on Electron Devices, vol. 47, pp. 1393 – 1400, Jul. 2000.
[5] T. Kuroda, “Optimization and Control of VDD and VTH for Low-Power, High-Speed CMOS Design,” IEEE/ACM International Conference on Computer Aided Design, pp. 2-34, Nov. 2002.
[6] K. Usami, M. Igarashi, T. Ishikawa, M. Kanazawa, M. Takahashi, M. Hamada, H. Arakida, T. Terazawa and T. Kuroda, “Design Methodology of Ultra Low-power MPEG4 Codec Core Exploiting Voltage Scaling Techniques,” Design Automation Conference, pp. 483-488, Jun. 1998.
[7] Y. S. Kwon, I. C. Park, and C. M. Kyung, “A new single clock flip-flop for half-swing clocking,” IEICE Trans. on Fundamentals, vol. E82-A, pp. 2521–2526, Nov. 1999.
[8] M. Tokumasu, H. Fujii, M. Ohta, T. Fuse, and A. Kameyama, “A New Reduced Clock-Swing Flip-Flop: NAND-type Keeper Flip-Flop (NDKFF),” IEEE Custom Integrated Circuits Conference, pp. 129-132, 2002.
[9] H. Kawaguchi and T. Sakurai, “A Reduced Clock-Swing Flip-Flop (RCSFF) for 63% Power Reduction,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 807-811, May, 1998.
[10] N. Nedovic, Willam W. Walker and V. G. Oklobdzija, “A Test Circuit for Measurement of Clocked Storage Element Characteristics,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1294-1304, Aug. 2004.
[11] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “I-V Power Supply High-Speed Digital Circuit Technology with Multi Threshold-Voltage CMOS,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 847-854, Aug. 1995.
[12] H. Kawaguchi, K. Nose, and T. Sakurai, “A Super Cut-off CMOS(SCCMOS) Scheme for 0.5V Supply Voltage with pico-Ampere Stand-by Current,” IEEE Journal Soild-State Circuits, vol. 35, pp. 1498-1501, Oct. 2000.
[13] K. S. Min, H. Kawaguchi, and T. Sakurai, “Zigzag Super Cut-off CMOS (ZSCCMOS) Block Activation with Self-Adaptive Voltage Level Controller: An Alternative to Clock-gating Scheme in Leakage Dominant era,” IEEE International Solid-State Circuits Conference, Tech. Papers, pp. 400-502, 2003
[14] S. M. Mishra, S. S. Rofail and K. S. Yeo, “Design of high performance double edge-triggered flip-flops,” IEE Proc. Circuits Devices System, vol. 147, pp. 283-290, Oct. 2000.
[15] A. Gago, R. Escafio, and J. A. Hidalgo, “Reduced implementation of D-type DET flip-flops,” IEEE Journal Solid-State Circuits, vol. 28, pp. 400-402, Mar. 1993.
[16] S.T. Oskulii, A Alvandpour, “Comparative study on low power, high performance standard cell flip flops,” SPIE International Symposium on Microelectronics, MEMS, Perth, Australia, pp. 390-398, Dec. 2003.
[17] W. Chung, T. Lo, and M. Sachdev, “A Comparative Analysis of Low-Power Low-Voltage Dual-Edge-Triggered Flip-Flops,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 10, pp. 913-918, Dec. 2002.
[18] C. Kim and S. M. Kang, "A Low-Swing Clock Double-Edge Triggered Flip-Flop,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 648-652, May 2002.
[19] Y. Y. Sung and R. C. Change, “A Novel CMOS Double-Edge Triggered Flip-Flop for Low Power Applications,” International Symposium Circuits and Systems, vol. 2, May 2004.
[20] P. Zhao, G. P. Kumar and M. Bayoumi, “Contention Reduced / Conditional Discharge Flip-Flops for Level Conversion in CVS Systems,” International Symposium Circuits and Systems, vol. 2, May 2004.
[21] S. Lin, M. Nagata, K. Shimazaki, K. Satoh, M. Sumita, H. Tsujikawa, A. T. Yang, “Full-chip Vectorless Dynamic Power Integrity Analysis and Verification Against 100uV/100ps-Resolution Measurement,” Custom Integrated Circuits Conference, pp. 509-512, Oct. 2004.