跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志豪
Chih-Hao Chen
論文名稱: 雙金屬CoNiB奈米非晶態觸媒之製備與果糖氫化反應
Preparation of Amorphous CoNiB Nano-Catalyst on Hydrogenation of Fructose
指導教授: 陳吟足
Yin-Zu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 甘露糖醇山梨糖醇氫化果糖觸媒
外文關鍵詞: PVP, hydrogenation, fructose, sorbitol, catalyst, mannitol
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採化學還原法製備不同Co/Ni比例之CoNiB雙金屬觸媒,另引入水溶性PVP高分子穩定劑,製備高分子穩定化觸媒(PVP-CoNiB)。以ICP、BET、TEM、XRD、DSC、XPS瞭解其物理性質,有系統探討CoNiB及PVP-CoNiB觸媒製備變因,藉改變果糖液相氫化反應條件瞭解CoNiB雙金屬觸媒之果糖催化特性並與葡萄糖及轉化糖氫化反應特性做比較。
    CoNiB雙金屬觸媒粒徑及粒徑分佈(3.8~5.6 nm)都比NiB(15~50 nm)及CoB(5.5~9.4 nm)觸媒小,添加PVP高分子穩定劑能讓PVP-CoNiB觸媒的粒徑更小更均一(3.1~4.7 nm)。CoNiB雙金屬觸媒整體組成,金屬/硼之元素比值與NiB及CoB單金屬觸媒比值相近,引入高分子PVP並不影響PVP-CoNiB組成中金屬對硼之元素比值。CoNiB與PVP-CoNiB雙金屬觸媒組成分佈均勻,表面Co/Ni比例與整體比例相近。CoNiB、PVP-CoNiB皆為非晶態觸媒,不為CoB與NiB的物理混合物,且具有較佳的熱穩定性。
    CoNiB觸媒於果糖及葡萄糖氫化反應最佳Co/Ni比均為6/4,於轉化糖氫化反應最佳Co/Ni比為5/5,活性約為NiB及CoB觸媒的2~3倍。PVP-CoNiB觸媒活性則約為CoNiB觸媒的2倍。CoNiB及PVP-CoNiB觸媒於果糖液相氫化反應中,最佳反應溫度分別為80℃及90℃,大於最佳反應溫度則活性下降,表觀活化能分別為28.4 kJ/mol與27.7 kJ/mol;氫氣壓力之表觀反應級數約為1;果糖濃度之表觀反應級數約為–0.4。CoNiB與PVP-CoNiB觸媒於果糖全程氫化反應甘露糖醇最大產率約為42 ~ 45 %。
    CoNiB與PVP-CoNiB觸媒於葡萄糖及轉化糖氫化反應活性遠不及果糖氫化反應,CoNiB與PVP-CoNiB雙金屬觸媒於葡萄糖氫化反應最佳條件與果糖最佳反應條件相同,於轉化糖氫化反應最佳條件則略有差異,最佳反應溫度降為70℃。CoNiB與PVP-CoNiB觸媒於轉化糖全程氫化反應,最大甘露糖醇產率為16 ~ 20 %。


    The PVP-stabilized CoNiB catalysts were prepared using the chemical reduction method with NaBH4, dissolving the water-soluble polymer of polyvinylpyrrolidone (PVP) in the precursor salt solution as a protective reagent. The PVP-CoNiB catalysts were characterized and examined for their catalysis on the hydrogenation of fructose and glucose. PVP polymer could adsorb on the nano-particles of CoNiB via a weak coordination bonding and stabilize it; the optimal quantity of PVP (PVP/Ni+Co) in the salt solution for preparing catalysts was around 3~5. The PVP-CoNiB samples were characterized by XRD as an amorphous structure and by TEM with a particle size distribution in the range of 3–5 nm. On catalysis, the PVP-CoNiB catalyst was significantly more active than NiB and CoB for hydrogenating fructose to mannitol. A good yield of mannitol about 42% could be obtained over the PVP-CoNiB catalyst.

    第一章 緒論 1 第二章 文獻回顧 3 2-1 金屬-硼奈米合金觸媒 3 2-1-1 物理性質 4 2-1-2 催化特性 12 2-1-2-1 NiB催化性質 12 2-1-2-2 CoB催化性質 13 2-1-2-3 CoNiB催化性質 14 2-2 PVP穩定化金屬奈米微粒 16 2-3 PVP穩定化雙金屬奈米微粒 18 2-4 單醣與糖醇 22 2-4-1 果糖液相氫化反應 23 2-4-2 葡萄糖液相氫化反應 24 第三章 實驗方法與設備 31 3-1 觸媒製備 31 3-1-1 CoNiB觸媒與PVP-CoNiB觸媒之製備 31 3-2 觸媒性質鑑定 33 3-2-1 元素組成分析 33 3-2-2 X-射線繞射分析 33 3-2-3 比表面積測定 34 3-2-4 示差掃描熱量測定 34 3-2-5 X-射線光電子光譜 35 3-2-6 穿透式電子顯微鏡 36 3-3 反應活性測定 36 3-4 實驗藥品及氣體 39 第四章 結果與討論 41 4-1 CoNiB與PVP-CoNiB觸媒製備 41 4-2 CoNiB與PVP-CoNiB觸媒鑑定 45 4-2-1 CoNiB與PVP-CoNiB觸媒之ICP組成分析 45 4-2-2 CoNiB與PVP-CoNiB觸媒之TEM顯微影像分析 45 4-2-3 CoNiB與PVP-CoNiB觸媒之BET鑑定 46 4-2-4 CoNiB與PVP-CoNiB觸媒之DSC熱穩定分析 49 4-2-5 CoNiB與PVP-CoNiB觸媒之X-射線繞射分析 49 4-2-6 CoNiB與PVP-CoNiB觸媒之表面分析 49 4-3 果糖氫化反應 59 4-3-1 CoNiB觸媒於果糖氫化反應 59 4-3-2 反應溫度對CoNiB觸媒於果糖氫化反應之影響 64 4-3-3 反應壓力對CoNiB觸媒於果糖氫化反應之影響 68 4-3-4 果糖濃度對CoNiB觸媒於果糖氫化反應之影響 70 4-3-5 PVP-CoNiB觸媒於果糖氫化反應 73 4-3-6 反應溫度對PVP-CoNiB觸媒於果糖氫化反應之影響 75 4-3-7 反應壓力對PVP-CoNiB觸媒於果糖氫化反應之影響 77 4-3-8 果糖濃度對PVP-CoNiB觸媒於果糖氫化反應之影響 79 4-4 CoNiB與PVP-CoNiB觸媒於葡萄糖氫化反應 81 4-5 CoNiB與PVP-CoNiB觸媒於轉化糖氫化反應 86 第五章 結論 90 參考文獻 92

    1. W. J. Wang, H. X. Li, and J. F. Deng, “Boron Role on Sulfur Resistance by Carbon Disulfide in Cyclopentadiene Hydrogenation”, Appl. Catal. A, 203 (2000) 293.
    2. S. J. Chiang, B. J. Liaw, and Y. Z. Chen, “Preparation of NiB Nanoparticles in Water-in-Oil Microemulsions and Their Catalysis during Hydrogenation of Carbonyl and Olefinic Groups”, Appl. Catal. A, 319 (2007) 144.
    3. B. J. Liaw, S. J. Chiang, C. H. Tsai, and Y. Z. Chen, “Preparation and Catalysis of Polymer-Stabilized NiB Catalysts on Hydrogenation of Carbonyl and Olefinic Groups”, Appl. Catal. A, 284 (2005) 239.
    4. H. Li, Y. Wu, J. Zhang, W. Dai, and M. Qiao, “Liquid Phase Acetonitrile Hydrogenation to Ethylamine over a Highly Active and Selective Ni–Co–B Amorphous Alloy Catalyst”, Appl. Catal. A, 275 (2004) 199.
    5. 陳世文, “奈米非晶態CoNiB雙金屬觸媒的製備與氫化探討”, 國立中央大學化學工程與材料工程研究所碩士論文 (2006).
    6. H. C. Brown, and C. A. Brown, “The Reaction of Sodium Borohydride with Nickel Acetate in Aqueous Solution - A Convenient Synthesis of an Active Nickel Hydrogenation Catalyst of Low Isomerizing Tendency”, J. Am. Chem. Soc., 85 (1963) 1003.
    7. 吳忠勳, “硼化鈷觸媒催化性質之研究”, 國立中央大學化學工程研究所碩士論文 (1989).
    8. H. C. Brown, and C. A. Brown, “The Reaction of Sodium Borohydride with Nickel Acetate in Ethanol Solution - A Highly Selective Nickel Hydroge- nation Catalyst”, J. Am. Chem. Soc., 85 (1963) 1005.
    9. 陳吟足, “硼化鎳觸媒的催化性質研究”, 國立台灣大學化學工程研究所博士論文 (1985).
    10. M. H. Rei, L. L. Sheu, and Y. Z. Chen, “Nickel Boride Catalyst in Organic Synthesis. I: A New Ferromagnetic Catalyst from the Diborane Reduction of Nickel Acetate”, Appl. Catal., 23 (1986) 281.
    11. N. N. Mal’tseva, Z. K. Sterlyadkina, and V. I. Mikheeva, “Reaction of Sodium Borohydride with Nickel Chloride in Aqueous Solutions”, Chem. Abstr., 11 (1966) 720.
    12. 陳懿, 范以寧, 沈儉一, 胡徵, “非晶態合金超細微粒催化劑製備、表徵和催化作用的研究”, 超細微粒材料與觸媒研討會論文集, (1996) 1.
    13. J. Saida, A. Inoue, and T. Masumoto, “The Effect of Reaction Condition on Composition and Properties of Ultrafine Amorphous Powders in (Fe, Co, Ni)-B Systems Prepared by Chemical Reduction”, Metal. Trans. A, 22A (1991) 2125.
    14. H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS Studies on Surface Electronic Characteristics of Ni-B and Ni-P Amorphous Alloy and Its Correlation on Their Catalytic Properties”, Appl. Surf. Sci., 152 (1999) 25.
    15. Y. Z. Chen, and K. J. Wu, “Hydrogenation Activity and Selectivity of Cobalt Borides”, Appl. Catal., 78 (1991) 185.
    16. J. Deng, J. Yang, S. Sheng, H. Chen, and G. Xiong, “The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts”, J. Catal., 150 (1994) 434.
    17. W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, and J. F. Deng, “Selective Hydrogenation of Cyclopentadiene to Cyclopentene over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163 (1997) 101.
    18. Y. Okamoto, Y. Nitta, I. Imanaka, and S. Teranishi, “Surface Character- ization of Nickel Boride and Nickel Phosphide Catalysts by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc. Faraday I., 75 (1979) 2027.
    19. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State, Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76 (1980) 998.
    20. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions III. Electronic and Catalytic Properties of Nickel Catalysts”, J. Catal., 64 (1980) 397.
    21. Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions IV. Electronic Effects on the Selectivity in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
    22. Y. Okamoto, E. Matsunaga, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions V. Electronic Effects on Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
    23. A. H. Uken, and C. H. Bartholomew, “Borided Metal Catalysts in Methanation of Carbon Monoxide I. Initial Activity and Conver- sion-Temperature Behavior of Unsupported Catalysts”, J. Catal., 65 (1980) 402.
    24. S. H. Xie, H. X. Li, H. Li, and J. F. Deng, “Selective Hydrogenation of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45.
    25. H. Li, X. Li, and J. F. Deng, “Influence on the Reduction Degree of Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydrogenation of Acrylonitrile”, Appl. Catal. A, 193 (2000) 9.
    26. C. A. Brown, and V. K. Ahuja, “Catalytic Hydrogenation. VI. The Reaction of Sodium Borohydride with Nickel Salts in Ethanol Solution. P-2 Nickel, a Highly Convenient, New, Selective Hydrogenation Catalyst with Great Sensitivity to Substrate Structure”, J. Org. Chem., 38 (1973) 2226.
    27. Z. G. Fang, B. R. Shen, J. Lu, K. N. Fan, and J. F. Deng, “DFT Study of Electron Transfer between B and Ni in Ni-B Amorphous Alloy”, ACTA CHIMICA SINIA, 57 (1999) 894.
    28 陳義忠, “對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”, 國立中央大學化學工程研究所碩士論文 (1993).
    29. 楊盛威, “硼化鎳觸媒於苯乙酮及二苯甲酮選擇性氫化反應之研究”, 國立中央大學化學工程研究所碩士論文 (1994).
    30. Y. Z. Chen, B. J. Liaw, and S. J. Chiang, “Selective Hydrogenation of Citral over Amorphous NiB and CoB Nano-Catalysts”, Appl. Catal. A, 284 (2005) 97.
    31. H. Li, H. Li, J. F. Deng, “Glucose Hydrogenation over Ni-B/SiO2 Amor- phous Alloy Catalyst and the Promoting Effect of Metal Dopants”, Catal. Today, 74 (2002) 53.
    32. Y. Nitta, T. Imanaka, and S. Teranish, “Hydrogenation Activity and Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts”, Bull. Chem. Soc. Jpn., 53 (1980) 3154.
    33. 楊長峰, “苯胺氫化製程觸媒之改進”, 國立中央大學化學工程研究所碩士論文 (1996).
    34. 吳坤哲, “硼化鈷系列觸媒對選擇性氫化反應的探討”, 國立中央大學化學工程研究所碩士論文 (1990).
    35. 魏水文, “促進劑對硼化鈷觸媒於選擇性氫化反應之影響”, 國立中央大學化學工程研究所碩士論文 (1992).
    36. H. Li, X. Chen, M. Wang and Y. Xu, “Selective Hydrogenation of Cinnam- aldehyde to Cinnamyl Alcohol over an Ultrafine Co-B Amorphous Alloy Catalyst”, Appl. Catal. A, 225 (2002) 117.
    37. H. Li, H. Li, M. Wang, “Glucose Hydrogenation over Promoted Co-B Amorphous Alloy Catalysts”, Appl. Catal. A, 207 (2001) 129.
    38. H. Wang, Z. Yu, H. Chen, J. Yang and J. F. Deng, “High Activity Ultrfaine Ni-Co-B Amorphous Alloy Powder for the Hydrogenation of Benzene”, Appl. Catal. A, 129 (1995) 143.
    39. Z. B. Yu, M. H. Qiao, H. X. Li, and J. F. Deng, “Preparation of Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1.
    40. 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局 (2002).
    41. H. P. Choo, K. Y. Liew, W. A. K. Mahmood, and H. Liu, “Morphology and Crystalline Structure of Polymer Stabilized Pd Nanoparticles”, J. Mater. Chem., 11 (2001) 2906.
    42. W. Yu, H. Liu, M. Liu, and Q. Tao, “Selective hydrogenation of α,β-Unsaturated Aldehyde to α,β-Unsaturated Alcohol over Polymer- Stabilized Platinum Colloid and the Promotion Effect of Metal Cations ”, J. Mol. Catal. A, 138 (1999) 273.
    43. X. Yang, and H. Liu, “Influence of Metal Ions on Hydrogenation of o-Chloronitrobenzene over Platinum Colloidal Clusters”, Appl. Catal. A, 164 (1997) 197.
    44. N. Toshima, Y. Shiraishi, and T. Teranishi, “Effect of Addition Metal Ions on Catalyst of Polymer-Stabilized Metal Nanocluster”, J. Mol. Catal. A, 177 (2001) 139.
    45. Y. Shiraishi, M. Nakayama, E. Takagi, T. Tominaga, and N. Toshima, “Effect of Quantity of Polymer on Catalysis and Superstructure Size of Polymer-Protected Pt Nanoclusters”, Inorg. Chim. Acta, 300-302 (2000) 964.
    46. T. Teranishi, and M. Miyake, “Size Control of Palladium Nanoparticles and Their Crystal Structure’’, Chem. Mater., 10 (1998) 594.
    47. K. Kralik, and A. Biffis, “Catalysis by Metal Nanoparticles Supported on Functional Organic Polymers’’, J. Mol. Catal. A, 177 (2001) 113.
    48. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loy, J. F. Deng, and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)”, Langmuir, 12 (1996) 909.
    49. H. Hirai, N. Yakura, Y. Seta, and S. Hodoshima, “Characterization of Palladium Nanoparticles Protected with Polymer as Hydrogenation Catalyst”, React. Func. Polym., 37 (1998) 121.
    50. A. B. R. Mayer, and J. E. Mark, “Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymer”, Eur. Polym. J., 34 (1998) 103.
    51. T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake. “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electro- phporetic Deposition”, J. Phy. Chem. B, 103 (1999) 3818.
    52. X. Yan, H. Liu, and K. Yong Liew, “Size Control of Polymer-Stabilized Ruthenium Nanoparticles by Polyol Reduction”, J. Mater. Chem., 11 (2001) 3387.
    53. H. P. Choo, K. Y. Liew, and H. Liu, “Factors Affecting the Size of Polymer Stabilized Pd Nanoparticles”, J. Mater. Chem., 12 (2002) 934.
    54. W. Tu, and H. Liu, “Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation”, J. Mater. Chem., 10 (2000) 2207.
    55. W. Yu, M. Liu, H. Liu, X. Ma, and Z. Liu, “Preparation, Characterization, and Catalytic Properties of Polymer-Stabilized Ruthenium Colloids”, J. Colloid Interf. Sci., 208 (1998) 439.
    56. N. Toshima, and Y. Wang, “Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters”, Langmuir, 10 (1994).
    57. W. Yu, Y. Wang, and H. Liu. “Preparation and Characterization of Polymer- Protected Pt/Co Bimetallic Colloids and Their Catalytic Properties in the Selective Hydrogenation of Cinnamaldehyde”, J. Mol. Catal. A, 112 (1996) 105.
    58. X. Yang, H. Liu, and H. Zhong, “Hydrogenation of o-Chloronitrobenzene over Polymer-Stabilized Palladium–Platinum Bimetallic Colloidal Clu- sters”, J. Mol. Catal. A, 147 (1999) 55.
    59. W. Jaime, and S. Rozita, “Hydrogenation of Glucose, Fructose, and Their Mixtures”, Ind. Eng. Chem. Prod. Res. Dev., 18 (1979) 50.
    60. J. Kuusisto, J. P. Mikkola, P. P. Casal, H. Karhu, J. Vaeyrynen, and T. Salmi, “Kinetics of the Catalytic Hydrogenation of D-fructose over a CuO-ZnO Catalyst”, Chem. Eng. J., 115 (2005) 93.
    61. T. Mohr, E. Schwarz, and P. J. Mackert, “Method for producing mannitol”, U.S Patent 6649754 (2003).
    62. K. Shimazu, Y. Tateno, M. Magara, N. Okamoto, T. Ohshima, M. Nagasawa, and H. Sakamura, “Raney Catalyst, Process for Producing It and Process for Producing a Sugar-Alcohol Using the Same”, U.S Patent 6414201 (2002).
    63. H. Degelmann, J. Kowalczyk, M. Kunz, and M. Schuttenhelm, “Process for the Hydrogenation of Sugars Using a Shell Catalyst”, U.S Patent 5936081 (1999).
    64. F. B. Bizhanov, D. V. Sokolsky, A. K. Omarov, A. M. Khisametdinov, S. Ongarbaev, and N. I. Popov, “Method of Producing Polyhydric Alcohols”, U.S Patent 4018835 (1977).
    65. A. W. Heinen, J. A. Peters, and H. van Bekkum, “Hydrogenation of Fructose on Ru/C Catalysts”, Carbohydr. Res., 328 (2000) 449.
    66. M. Makkee, A. P. G. Kieboom, and H. van Bekkum, “Production Methods of D-mannitol”, Starch, 37 (1985) 136.
    67. L.W. Wright, “Sorbitol and Mannitol”, Chemtech, 1 (1974) 42.
    68.
    H. C. M. Pijnenburg, B. F. M. Kuster, and H. S. van der Baan, “Kinetics of the Hydrogenation of Fructose with Raney-Nickel”, Starch, 30 (1978) 352.
    69. A. W. Heinen, J. A. Peters, and H. van Bekkum, “The Combined Hydrolysis and Hydrogenation of Inulin Catalyzed by Bifunctional Ru/C”, Carbohydr. Res., 330 (2001) 381.
    70. M. Makkee, A. P. G. Kieboom, and H. van Bekkum, “Hydrogenation of D-Fructose and D-Fructose/D-Glucose Mixtures”, Carbohydr. Res., 138 (1985) 225.
    71. H. Guo, H. Li, J. Zhu, W. Ye, M. Qiao, and W. Dai, “Liquid Phase Glucose Hydrogenation to D-Glucitol over an Ultrafine Ru-B Amorphous Alloy Catalyst”, J. Mol. Catal. A-Chem., 200 (2003) 213.
    72. H. Guo, H. Li, Y. Xu, and M. Wang, “Liquid Phase Glucose Hydrogenation over Cr-Promoted Ru-B Amorphous Alloy Catalysts”, Mater. Lett., 57 (2002) 392.
    73. E. Crezee, B. W. Hoffer, R. J. Berger, M. Makkee, F. Kapteijn, and J. A. Moulijn, “Three-Phase Hydrogenation of D-Glucose Over a Carbon Supported Ruthenium Catalyst-Mass Transfer and Kinetics”, Appl. Catal. A, 251 (2003) 1.
    74. K. van Gorp, E. Boerman, C. V. Cavenaghi, and P. H. Berben, “Catalytic Hydrogenation of Fine Chemicals: Sorbitol Production”, Catal. Today, 52 (1999) 349.
    75. C. C. Sweeley, R. Bentley, M. Makita, and W. W. Wells, “Gas-Liquid Chromatography of Trimethylsilyl Derivatives of Sugars and Related Substances”, J. Am. Chem. Soc., 85 (1963) 2497.
    76. I. Molnar-Perl, “Simultaneous Quantitation of Acids and Sugars by Chromatography: Gas or High-Performance Liquid Chromatography?”, J. Chromatogr. A, 845 (1999) 181.
    77. E. C. Oliveira, M. C. vaz de Campos, A. S. Ana Lopes, M. G. Rodrigues Vale, and E. B. Caramao, “Ion-Exchange Resins in the Isolation of Nitrogen Compounds from Petroleum Residues”, J. Chromatogr. A, 1027 (2004) 171.
    78. M. A. Adams, Z. Chen, P. Landman, and T. D. Colmer, “Simultaneous Determination by Capillary Gas Chromatography of Organic Acids, Sugars, and Sugar Alcohols in Plant Tissue Extracts as Their Trimethylsilyl Derivatives”, Analyt. Biochem., 266 (1999) 77.

    QR CODE
    :::