| 研究生: |
潘同宣 Tung-Shiuan Pan |
|---|---|
| 論文名稱: |
疊紋式自動準直儀系統 Autocollimator system based on moiré method |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 自準儀 、疊紋 、角度量測 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套新的自動準直儀技術-「疊紋式自動準直儀系統」,其是將疊紋理論加入傳統自準儀系統中,分析待測平面偏轉時產生的疊紋相位偏移來判斷其偏轉角度的變化,研究方法如下:將光柵置於透鏡焦平面上,光柵影像穿過透鏡後由待測平面反射,再次經透鏡聚焦成像於影像偵測器上;疊紋現象為兩組或兩組以上光柵相疊所形成具另一低頻的週期性條紋,在此系統中的第一道光柵為偵測器所量測到的光柵影像,第二道光柵則為電腦中已儲存的數位光柵影像,當第一道光柵影像隨著待測平面偏轉而偏移,疊紋條紋隨之偏移,利用亞條紋演算法來分析疊紋條紋的偏移量我們可求出待測平面的偏轉角度。
在本次實驗中,系統的量測靈敏度可藉由調整光柵間距及透鏡焦距來改變,當所使用的透鏡焦距為300 mm時,光柵間距100 m下的系統靈敏度為10.48,量測解析度為0.034 arc-sec,將光柵換為間距200 m,系統靈敏度為5.24,量測解析度可達0.024 arc-sec。
A novel autocollimator using the formation of moiré image is proposed. By analyzing the deviation of the phase of the moiré fringe, we can calculate the angular deflection of the sample flat. In the system configuration, the grating is located on the focus plane of the lens. The image of the grating propagates through the lens and be reflected by the flat mirror. The reflected back image enters in the lens again and forms image on the screen of the image detector.
The moiré fringe is obtained from the superposition of the two images of gratings. In the experiment, the first grating image is received by the detector, and the second grating image is the digital image saved in the computer. When the sample flat is be deflected, the image of grating will have displacement, we can get the angular deflection of the sample by using sub-fringe method to analyze the displacement of the moiré fringe.
In this experiment, the measurement sensitivity of the system can be controlled by adjusting the grating pitch and the focus length of the lens. According to the experiment result, the measurement sensitivity is 10.48, and the accuracy is 0.034 arc-sec by using 300 mm lens and 100 m grating. With the 200 m grating, the measurement sensitivity is 5.24, and the accuracy can achieve 0.024 arc-sec.
[1]Möller-wedel GmbH, “Example for Application of collimators, telescopes, visual and electronic autocollimators,” April 20, 2010.
[2]F. Gerald, “Enhancement of high-resolution electronic autocollimators by application of phase grating technology,” SPIE, Vol.5856, 2005.
[3]G. Ralf D., K. Oliver, J. Andreas, K. Michael, “Recent advances in autocollimator calibration and optimisation at PTB,” DGaO Proceedings, 2012.
[4]L. Douglas B., “Ultra-high resolution, absolute, Cartesian electronic autocollimator,” SPIE, Vol. 5190, 2003.
[5]D.F. Zheng, X.Z. Wang, Z.L. Li, “Accuracy analysis of parallel plate interferometer for angular displacement measurement,” Optics & Laser Technology, Vol. 40, pp.6–12, 2008.
[6]S.T. Lin, K.T. Lin, W.J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Optics Communications, Vol. 277,pp.251–255, 2007.
[7]T. Wei, B.P. Zhao, T.Z. Zhi, “Arbitrary angle measurement by grating wedge-plate interferometer and the calibration technique,” SPIE, 2005.
[8]C.M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Applied Optics, Vol. 43, No. 19, 2004.
[9]D.F. Zheng, X.Z. Wang, F. Tang, “An improved method of angle measurement with a position sensitive detector,” Chinese Optics Letters, Vol. 5, No. 7, July 10, 2007.
[10]W. Tao, Z.B. Pu, Z Zhang, “Dual-frequency laser interferometry of rotating angle measurement with a grating wedge-plate,” SPIE, Vol. 4778, 2002.
[11]Z. Ge, M. Takeda,” High-resolution two-dimensional angle measurement technique based on fringe analysis,” App. Opt., Vol. 42, No. 34, December, 2003.
[12]J. Y. Lee, H. L. Hsieh, G. Lerondel, R. Deturche, M. P. Lu, J. C. Chen, “Heterodyne grating interferometer based on a quasi-common-optical- path configuration for a two- degrees- of- freedom straightness measurement,” App. Opt., Vol. 50, pp.1272-1279, 2011.
[13]K. C. Fan, Y. Zhao, “A laser straightness measurement system using optical fiber and modulation techniques,” Int. J. Mach. Tools Manufact., Vol. 40, pp.2073–2081, 2000.
[14]Q. Feng, B. Zhang, C. Kuang, “A straightness measurement system using a single-mode 'ber-coupled laser module,” Opt. Laser Tech., Vol. 36, pp.279 – 283, 2004.
[15]C. H. Liu, W .Y. Jywe, Y .R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. IMechE, pp.483-492, 2010.
[16]M. Jurevicius, J. Skeivalas, R. Urbanavicius, “Accuracy evaluation of two-dimensional straightness measurement method based on optical meter,” Measurement, Vol. 46, pp.960-963, February 2013.
[17]J. W. Liu; D. H. Zhang, L. S. Wang, P. I. Wang, “Deflection Compensation Model for Flatness Measuring Roll,” Journal of Iron and Steel Research. International, Vol. 17, pp.35-37, 2010.
[18]I. Fujimotoa, K. Nishimurab, T. Takatsujic, Y. S. Pyund, “A technique to measure the flatness of next-generation 450mm wafers using a three-point method with an autonomous calibration function,” Precision Engineering, Vol. 36, pp.270–280, 2012.
[19]K. C. Fan, F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precision Engineering, Vo. 21, pp.102-112, 1997.
[20]自準直儀,百度文庫,http://wenku.baidu.com/view/c998eaec102de2bd960588ab.html.
[21]W. Gao, Y. Saito, H. Muto, Y. Arai, Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Annals - Manufacturing Technology, Vol. 60, pp. 515–518, 2011.
[22]M. Abolhassani, “Formulation of moire fringes based on spatial averaging,” Optik, Vol. 122, pp.510–513, 2011.
[23]S. Kishimoto, X. Huimin, N. Shinya, “Electron moire method and its application to micro-deformation measurement,” Optics and Lasers in Engineering, Vol. 34, pp. 1-14, 2000.
[24]C. M. Liu, L. W. Chen, “Using the digital phase-shifting projection moire method and wavelet transformation to measure the deformation of a PMMA cantilever beam,” Polymer Testing, Vol. 24, pp.576–582, 2005.
[25]N. S. Liou “Specimen gratings made from body art paper for in-plane moire strain analysis,” Polymer Testing, Vol. 24, pp. 535–539, 2005.
[26]N. S. Liou, C. Y. Huang, “Fourier transform moire strain analysis by using cross gratings produced from iron-on paper and inkjet printer,” Polymer Testing, Vol. 22, pp. 487–490, 2003.
[27]林佑儒,「疊紋自動對焦技術」,國立中央大學,碩士論文,2010。
[28]賴律臻,「差動式疊紋自動對焦技術」,國立中央大學,碩士論文,2011。
[29]Y. Nakano, “Automatic measurements of the small angle variation using a holographic moire interferometry and a computer processing,” SPIE, Vol. 673, 1986.
[30]L. Glatt, A. Livnat, O. Kafri, D. Heller, “Autocollimator based on moiré deflectometry,” App. Opt., Vol. 23, No. 16, 1984.
[31]J. Krumm, S. A. Shafer, “A sampled-grating model of moiré patterns from digital imaging,” Camegie Mellon Univeristy, July 1989.
[32]X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, X. Xiao, “A study on the digital moire´ technique with circular and radial gratings,” Optics and Lasers in Engineering, Vol. 45, pp.783–788, 2007.
[33]M. Wang, L. Ma, D.C. Li, J.G. Zhong, “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng., Vol. 39, No.10, pp. 2726–2733, 2000.