| 研究生: |
葉家齊 Chia-Chi Yeh |
|---|---|
| 論文名稱: |
具溫度及電壓變異補償技術之 非石英式時脈產生器 Crystal-less Clock Generator with Temperature and Supply Voltage Compensation |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 非石英式時脈產生器 、溫度補償 、電壓補償 |
| 外文關鍵詞: | crystal-less clock generator, temperature compensation, voltage compensation |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出具溫度對頻率補償機制之非石英式時脈產生器,針對低頻及高頻應用的不同需求,共提出兩種電路架構。第一種為8 MHz非石英式時脈產生器,將傳統弛張振盪器的架構進行改良,對於供應電壓源以及溫度漂移有較佳的抵抗能力,並在脈波產生器對迴路延遲時間做溫度補償。在晶片溫度漂移為-40 °C至150 °C的範圍內,量測到的輸出頻率變異量最佳值為10.9 ppm/ °C。在供應電源漂移為±10 %的範圍內,量測到的輸出頻率變異量小於0.28 %。第二種為具十六相位輸出之768 MHz非石英式時脈產生器,架構中環型振盪器的供應電源來自輸出電壓溫度係數為正的穩壓器,可以補償電晶體之載子遷移率對於輸出頻率的負溫度效應,並在環型振盪器中加入溫度補償係數之微調電路,使輸出頻率在不同的製程漂移下都能達到最佳的溫度補償效果。其操作頻率為768 MHz時,溫度漂移為 -40 °C至150 °C的範圍內,量測到的輸出頻率變異量最佳值為110.7 ppm/ °C。在供應電源漂移為±10 %的範圍內,量測到的輸出頻率變異量小於0.96 %。故本論文設計之非石英時脈產生器可以在系統因硬體面積受限而無法使用石英振盪器時,提供可靠之穩定時脈,當作時脈倍頻器的參考訊號,或是取代整個時脈倍頻器加上傳統石英振盪器的組合,達到較小面積和低成本的設計。
Two on-chip crystal-less clock generator (CLCG) with temperature compensation are presented. For both high speed and low speed applications, this thesis contain two kinds of architectures. The first one is a 8 MHz relaxation oscillator. The voltage and current reference circuits have high immunities of temperature and supply voltage variations. A proposed pulse generator is used to eliminate the loop delay time variation caused by temperature drift. Under the temperature range is form -40 °C to 150 °C, the measured output frequency accuracy is 10.9 ppm/°C. Under the ±10 % supply voltage, the output frequency variations is less than 0.28%. The second architecture is a 768 MHz multi-phase clock generator with temperature compensation. The supply voltage of the multi-phase ring oscillator is from a regulator which has positive temperature coefficient that can compensate the output frequency drift caused by temperature variation. Besides, we apply a temperature coefficient calibration circuit to make sure the output frequency has higher accuracy in the process variations. The output frequency accuracy of 768 MHz is 110.7 ppm/°C, under the temperature range is form -40 °C to 150 °C. In some applications limited by hardware area, traditional crystal oscillator can be replaced with these crystal-less clock generator, and it would consume less cost and area.
[1] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback”, IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
[2] U. Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973-1982, Aug. 2010.
[3] http://www.aecouncil.com/AECDocuments.html
[4] Y. Lu, G. Yuan, L. Der, W.-H. Ki, and C. P. Yue, “A ±0.5 % precision on-chip frequency reference with programmable switch array for crystal-less applications” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 10, pp. 642-646, Oct. 2013.
[5] F. Sebastiano, L. J. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks” , IEEE J. Solid-State Circuit, vol.46, no.7, pp.1544-1552, Jul. 2011.
[6] F. Sebastiano, L. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A low-voltage mobility-based frequency reference for crystal-less ULP radios,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2002-2009, July. 2009.
[7] M. S. McCorquodale, J. D. O' Day, S. M. Pernia, G. A. Carichner, S. Kubba, and R. B. Brown, "A monolithic and self-referenced RF LC clock generator compliant with USB 2.0," IEEE J. Solid-State Circuits, vol. 42, no.2, pp. 385-399, Feb. 2007.
[8] W.-H. Sung, S.-Y. Hsu, J.-Y. Yu, C.-Y. Yu, and C.-Y. Lee, “A frequency accuracy enhanced sub-10uW on-chip clock generator for energy efficient crystal-less wireless biotelemetry applications,” in Proc. IEEE Symp. On VLSI, 2010, pp. 115-116.
[9] J.-C. Liu, W.-C. Lee, H.-Y. Huang, K.-H. Cheng, C.-J. Huang, Y.-W. Liang, J.-H. Peng, and Y.-H. Chu, “A 0.3-V all digital crystal-less clock generator for energy harvester applications,” in Proc. Asian Solid-State Circuits Conference, 2012, pp.117-120.
[10] Y.-H. Chiang, and S.-I. Liu, “A submicrowatts 1.1 MHz CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 12, pp. 837-841, Dec. 2013.
[11] Y.-H. Chiang, and S.-I. Liu, “Nanopower CMOS relaxation oscillator with sub-100 ppm/°C temperature coefficient,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 9, pp. 661-665, Jun. 2014.
[12] K. Sundaresan, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no.2, pp. 433-442, Feb. 2006.
[13] Behzad Razavi, “Design of analog CMOS integrated circuits,” 2005.
[14] 張啟揚, “操作在0.5伏特下具溫度補償技術非石英振盪器之全數位式時脈產生器,” 碩士論文, 國立中央大學, 2013.
[15] N. Sadeghi, A. Sharif-Bakhtiar, and S. Mirabbasi, “A 0.007-mm2 108-ppm/°C 1-MHz relaxation oscillator for high-temperature application up to 108 °C in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 60, no. 7, pp. 1692-1701, Jun. 2013.
[16] J. Lee, and S.-H. Cho, “A 1.4-µW 24.9-ppm/°C current reference with process-insensitive temperature compensation in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no.10, pp. 2527-2533, Jul. 2012.
[17] Y. Zhang, W. Rhee, T. Kim, and H. Park, “A 0.35-0.5-V 18-152 MHz digitally controlled relaxation oscillator with adaptive threshold calibration in 65-nm CMOS
[18] ,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 8, pp. 736-740, Jun. 2015.
[19] K.-K. Huang, and D. D. Wentzloff, “A 1.2-MHz 5.8-μW temperature compensated relaxation oscillator in 130-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 5, pp. 334-338, Apr. 2014.
[20] K.-J. Hsiao, “A 32.4 ppm/°C 3.2-1.6 V self-chopped relaxation oscillator with adaptive supply generation,” IEEE Symp. On VLSI, 2012, pp. 14-15.
[21] T. Tokairin, K. nose, K. Takeda, and K. Noguchi, “A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feed-forward period control scheme,” IEEE Symp. On VLSI, 2012, pp. 16-17.
[22] S. M. Kashmiri, M. A. P. Pertijs, and K. A. A. Makinwa, “A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from - 55 °C to 125 °C,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 2510-2520, Dec. 2010.
[23] Y. Cao, P. Leroux, W. De Cock, and M. Steyaert, “A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 402-403.
[24] A. Paidimarri, D. Griffith, A. Wang, and A. P. Chandrakasan, “A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25 % temperature stability,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 184-185, Feb. 2013.
[25] K. Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[26] J. Lee, and S.-H. Cho, “A 10MHz 80μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS,” IEEE Symp. On VLSI, 2009, pp. 226-227.
[27] C.-C. Chung, and C.-R. Yang, “An autocalibrated all-digital temperature sensor for On-Chip thermal monitoring,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no.2, pp. 105-109, Feb. 2011.
[28] K.-H. Cheng, J.-C. Liu, and H.-Y. Huang, “A 0.6-V 800-MHz all-digital phase-locked loop with a digital supply regulator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 12, pp. 888-892, Jan. 2013.
[29] Y.-C. Shih, and B. Otis, “An on-chip tunable frequency generator for crystal-less low-power WBAN radio,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 4, pp. 187-191, Mar. 2013.
[30] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2047-2054, Feb. 2009.
[31] R. Vijayaraghavan, S. K. Islam, M. R. Haider, and L. Zuo, “Wideband injection-locked frequency divider based on a process and temperature compensated ring oscillator,” IET Circuits, Devices & Systens, vol. 3, no. 5, pp. 259-267, Oct. 2009.
[32] X. Zhang, and A. B. Apsel, “A low-power, process and temperature compensated ring oscillator with addition-based current source,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 58, no. 5, pp. 868-878, Jun. 2010.
[33] G. Wu, K. Sun, S. Guo, and T. Zhang, “A low-voltage and temperature compensated ring VCO design,” IEEE Dallas Circuits and Systems Conf., 2014, pp. 1-4.