跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭怡凌
Guo, Yi-Lin
論文名稱: 引入四苯基乙烯於硫二苯胺為中心之雙錨基光敏染料與染料敏化太陽能電池
Metal Free Di-anchored Organic Dyes Containing Tetraphenylethylene Moiety in the Phenothiazine Core for Dye Sensitized Solar Cells (DSSCs)
指導教授: 林建村
Jiann-T'suen Lin
陳銘洲
Ming-Chou Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 染料敏感太陽能電池非金屬有機光敏染料硫二苯胺四苯乙烯雙錨基
外文關鍵詞: dye-sensitied solar cell, metal-free sensitizes, phenothiazine, tetraphenylethylene, di-anchor
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文透過Stille偶合反應、Vilsmeier-Haack醛化反應、Knoevenagel縮合反應等化學方法合成接有不同的共軛架橋連接兩個電子受體的硫二苯胺 (phenothiazine) 電子予體之YL系列雙錨基有機染料,可作為染敏太陽能電池之光敏染料。我們引入像螺旋槳狀的非平面四苯基乙烯基 (tetraphenylethylene) 於硫二苯胺電子予體上,除了可抑制YL染料分子之π‒π堆疊外,也期待能使染料分子在TiO2表面上能夠呈現較緊密的排列,搭配雙錨基結構,可以更有效的抑制暗電流。
    這些具有四苯基乙烯基結構的YL染料吸光範圍在300‒600nm,莫耳消光係數最高可以達到70000 M-1cm-1以上。經由電化學和光化學數據計算得到染料的HOMO (5.37至5.47 eV)和LUMO(3.26至3.31 eV)確認染料能將電子注入到TiO2及能夠被電解質還原。而YL染料的光電轉換效率在模擬的AM 1.5 G照明下為3.94至7.11%,在6000 lux下為8.64至11.45%。其中,共軛架橋為3-己基噻吩的YL-2在1 sun和弱光下都有最好的表現,在1 sun光照下達N719標準元件之81%。


    A series of new di-anchored organic dyes containing a tetraphenylethylene tethered phenothiazine core (YL) featuring with different π-bridging units (thiophene, 3-hexylthiophene, 4-hexyl-2, 2’-thiophene, cyclopenta[1,2-b:5,4-b']dithiophene) have been synthesized via Stille coupling, Vilsmeier-Haack formylation and Knoevenagel condensation reactions, and used as the sensitizers of dye-sensitized solar cells (DSSCs). Incorporation of a nonplanar TPE entity with propeller-like configuration is beneficial to suppressing π‒π aggregation of the dye molecules. Besides, TPE-induced more compact dye packing on TiO2 surface in collaboration with double anchors are expected to more effectively suppress the dark current of DSSCs.
    These new dyes have electronic absorption raging from 300 to 600 nm, with the highest molar coefficient surpassing 70000 M-1cm-1. The HOMO (5.37 to 5.47 eV) and LUMO (3.26 to 3.31) energy levels of the dyes calculated from the electrochemical and photochemical data assure sufficient thermodynamic driving force for electron ejection and regeneration. The light to electricity conversion efficiency of YL dyes ranges from 3.94 to 7.11% under simulated AM 1.5 G illuminations and from 8.64 to 11.45% under 6000 lux. Among them, the YL-2 which a 3-hexylthiophene spacer in the π-conjugated bridgunites between the donor and the acceptor has the best efficiency under 1 sun, reaching 81% of N719-based standard cell.

    目錄 Abstract i 摘要 ii 目錄 iii 圖目錄 v 附圖目錄 vii 第一章、緒論 1 1-1 、前言 1 1-2 、太陽能光譜介紹 1 1-3 、太陽能電池介紹 2 1-3-1、矽晶類太陽能電池 4 1-3-2、半導體太陽能電池 5 1-3-3、新興染料太陽能電池 6 1-4 、有機染料敏化太陽能電池 10 1-4-1、有機染料敏化太陽能電池元件組成 11 1-4-2、有機染料敏化太陽能電池運作機制 14 1-4-3、有機染料敏化太陽能電池參數介紹 16 1-5 、研究動機 19 第二章、實驗方法與過程說明 26 2-1、實驗儀器 26 2-2、藥品名稱與縮寫 28 2-3、實驗步驟與鑑定 31 2-4、太陽能電池元件製作 43 第三章、結果與討論 44 3-1、YL-1至YL-4系列染料 44 3-1-1、YL染料之合成方法 44 3-1-2、化合物生成之關鍵反應 49 3-2、YL-1至YL-4系列染料之物理性質 52 3-2-1、光物理性質 52 3-2-2、電化學性質 55 3-3、YL-1至YL-4元件效率與相關量測之探討 57 3-3-1、YL-1至YL-4染料元件之效率表現探討 57 3-3-2、YL-1至YL-4染料元件之EIS性質探討 60 3-3-3、YL-1至YL-4染料元件之效率與共吸附劑 62 3-3-4、YL-1至YL-4染料元件於弱光之效率表現探討 64 3-4、理論計算 66 第四章、結論 73 參考文獻 74

    1. H. Kallman; M. Pope, “Photovoltaic Effect in Organic Crystals”, J. Chem. Phys., 1958, 30, 585-586.
    2. S. Protti; M. Fagnoni, “The Sunny Side of Chemistry: Green Synthesis by Solar Light”, Photochem. Photobiol. Sci., 2009, 8, 1499-1516.
    3. D. M. Chapin; C. S. Fuller; G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 1954, 25, 676-677.
    4. M. A. Green; K. Emery; Y. Hishikawa; W. Warta; E. D. Dunlop, Prog.“ Solar Cell Efficiency Tables”, Prog. Photovolt. Res. Appl., 2014, 22, 701-710.
    5. M. Drießen; D. Amiri; N. Milenkovic; B. Steinhauser; S. Lindekugel; J. Benick; S. Reber; S. Janz,“ Solar Cells with 20% Efficiency and Lifetime Evaluation of Epitaxial Wafers”, Energy Procedia., 2016, 92, 785-790.
    6. W. Qarony; M. I. Hossain; M. Hossain; M. J. Uddin; A. Haque; A. R. Saad; Y. H. Tsang, “ Efficient Amorphous Silicon Solar Cells: Characterization, Optimization and Optical Loss Analysis”, Results in Phys., 2017, 7, 4287-4293.
    7. E. D. Kosten1; J. H. Atwater; J. Parsons; A. Polman; H. A. Atwater,“ Highly Efficient GaAs Solar Cells by Lmiting Light Emission Angle”, Light Sci. Appl., 2013, 2, 45-50
    8. S. Zhang; Y. Qin; J. Zhu; J. Hou, “Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor”, Adv. Mater., 2018, 30, 1800868-1800875.
    9. G. Oster; J. S. Bellin; R. W. Kinball; M. E. Scharder, “Dye Sensitized Photoöxidation”, J. Am. Chem. Soc., 1959, 81, 5095-5099.
    10. H. Tsubomura; M. Mastsumumuera; Y. Nomura; T. Amamiya, “Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell”, Nature, 1976, 261, 402-403.
    11. B. O. Regan; M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, 1991, 353, 737-740.
    12. Md. K. Nazeeruddin; A. Key; I. Rodicio; R. Humphry-Baker; E. Mueller; P. Liska; N. Vlachopoulos; M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
    13. Md. K. Nazeeruddin; F. D. Angelis; S. Fantacci; A. Selloni; G. Viscardi; P. Liska; S. Ito; B. Takeru; M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J .Am. Chem. Soc., 2005, 127, 16835-16847.
    14. Md. K. Nazeeruddin; P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphry-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi; M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
    15. P. Wang; S. M. Zakeeruddin; J. E. Moser; M. K. Nazeeruddin; T. Sekiguchi; M. Grätzel, “A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte”, Nat. Mater., 2003, 2, 402-407.
    16. F. Gao; Y. Wang; D. Shi; J. Zhang; M. Wang; X. Jing; R. Humphry-Baker; P. Wang; S. M. Zakeeruddin; M. Grätzel, “Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells”, J. Am. Chem. Soc., 2008, 130, 10720-10728.
    17. C.-Y. Chen; M. Wang; J.-Y. Li; N. Pootrakulchote; L. Alibabaei; C. Ngoc-le; J.-D. Decoppet; J.-H. Tsai; C. Grätzel; C.-G. Wu; S. M. Zakeeruddin; M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano., 2009, 3, 3103-3109.
    18. A. Yella; H.-W. Lee; H.-N. Tsao; C. Yi; A. K. Chandiran; M. K. Nazeeruddun; E. W.-G. Diau; C.-Y. Yeh; S. M. Zakeeruddin; M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, 2011, 334, 629-634.
    19. S. Mathew; A. Yella; P. Gao; R. Humphry-Baker; B. F. Curchod; N. Ashari-Astani; I. Tavernelli; U. Rothlisberger; Md. K. Nazeeruddin; M. Grätzel, “Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers”, Nat.Chem., 2014, 6, 242-247.
    20. Z. Yao; H. Wu; Y. Li; J. Wang; J. Zhang; M. Zhang; Y. Guo; P. Wang, “Dithieno-picenocarbazole as the Kernel Module of Low-Energy-Gap Organic Dyes for Efficient Conversion of Sunlight to Electricity”, Energy Environ. Sci., 2015, 8, 3192-3197.
    21. K. Kakiage; Y. Aoyama; T. Yano; K. Oya; J. i. Fujisawab; M. Hanaya, “Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes”, Chem. Commun., 2015, 51, 15894-15897.
    22. (a) A. R. Yusoff; M. K. Nazeeruddin, “Organohalide Lead Pervoskites for Photovoltaic Applictions”, J. Phys. Chem. Lett., 2016, 7, 851-866. (b) H. J. Snaith, “Pervoskites: the Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells”, J. Phys. Chem. Lett., 2013, 4, 36233630.
    23. National Renewable Energy Laboratory. NREL Best Research Cell Efficiencies Chart; https://www.energy.gov/eere/solar/downloads/research-cell-efficiency-records.
    24. (a) G. H. Carey; A. L. Abdelhady; Z. Ning; S. M. Thon; O. M. Bakr; E. H. Sargent, “Colloidal Quantum Dot Solar Cells”, Chem. Rev., 2015, 115, 12732-12763. (b) W. Li; X. Zhong, “Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells”, J. Phys. Chem. Lett., 2015, 6, 796-806. (c) J. Wang, Y. Li, Q. Shen; T. Izuishi; Z. Pan; K. Zhao; X. Zhong, “Mn Doped Quantum Dot Sensitized Solar Cells with Power Conversion Efficiency Exceeding 9%”, J. Mater. Chem. A, 2016, 4, 877-886.
    25. M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338-344.
    26. N. Robertson, “Optimizing Dyes for Dye-Sensitized Solar Cells”, Angew. Chem. Int. Ed., 2006, 45, 2338-2345.
    27. Md. K. Nazeeruddin; R. Humphry-Baker; P. Liska; M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981-8987.
    28. Y. Hua; S. Chang; D. Huang; X. Zhou; X. Zhu; J. Zhao; T. Chen; W.-Y. Wong; W.-K. Wong, “Significant Improvement of Dye-Sensitized Solar Cell PerformanceUsing Simple Phenothiazine-Based Dyes”, Chem. Mater., 2013, 25, 2146-2153.
    29. A. Abbotto; N. Manfredi; C. Marinzi; F. D. Angelis; E. Mosconi; J.-H. Yum; Z. Xianxi; Md. K. Nazeeruddin; M. Grätzel, “Di-Branched Di-Anchoring Organic Dyes for Dye-Sensitized Solar Cells”, Energy Environ. Sci., 2009, 2, 1094-1101.
    30. (a) N. Manfredi; B. Ceccon; A. Abbotto, “Multi-Branched Multi-Anchoring Metal-Free Dyes for Dye-Sensitized Solar Cells”, Eur. J. Org. Chem., 2014, 7069-7086. (b) D. Kumar; K.-T. Wong, “Organic Dianchor Dyes for Dye-Sensitized Solar Cells”, Mater. Today Energy, 2017, 5, 243-279. (c) Y.-C. Chen; J. T. Lin. “Multi-Aanchored Sensitizers for Dye-Sensitized Solar Cells”, Sust. Energy Fuels, 2017, 1, 969-985.
    31. (a) B. Cecconi; N. Manfredi; R. Ruffo; T. Montini; I. Romero-Ocaña; P. Fornasiero, A. Abbotto, “Tuning Thiophene-Based Phenothiazines for Stable Photocatalytic Hydrogen Production”, ChemSusChem., 2015, 8, 4216-4228. (b) N. Manfredi; B. Cecconi; V. Calabrese; A. Minotti; F. Peri; R. Ruffo; M. Monai; I. Romero-Ocaña; T. Montini; P. Fornasiero; A. Abbotto, “Dye-Sensitized Photocatalytic Hydrogen Production: Distinct Activity in A Glucose Derivatives of a Phenothiazine Dye”, Chem. Commun., 2016, 52, 6977-6980.
    32. W.-I Hung; Y.-Y. Liao; C.-Y. Hsu; H.-H. Chou; T.-H. Lee; W.-S. Kao; J. T. Lin, “High-Performance Dye-Sensitized Solar Cells Based on Phenothiazine Dyes Containing Double Anchors and Thiophene Spacers”, Chem. Asian J., 2014, 9, 357-366.
    33. W.-I Hung; Y.-Y. Liao; T.-H. Lee; Y.-C. Ting; J.-S. Ni; W.-S. Kao; J. T. Lin, T.-C. Wei; Y.-S. Yeng, “Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells”, Chem. Commun., 2015, 51, 2152-2155.
    34. Y. Hong; J. W. Y. Lam; B. Z. Tang, “Aggregation-induced emission”, Chem. Soc. Rev., 2011, 40, 5361-5388.
    35. C. Chen; J. Y. Liao; Z. Chi; B. Xu; X. Zhang; D. B. Kuang; Y. Zhang; S. Liu; J. Xu, “Effect of Polyphenyl-Substituted Ethylene End-Capped Groups in Metal-Free Organic Dyes on Performance of Dye-Sensitized Solar Cells”, RSC Adv., 2012, 2, 7788-7797.
    36. C. Chen; J.-Y. Liao; Z. Chi; B. Xu; X. Zhang; D.-B. Kuang; Y. Zhang; S. Liu, J. Xu, “Metal-Free Organic Dyes Derived from Triphenylethylene for Dye-Sensitized Solar Cells: Tuning of the Performance by Phenothiazine and Carbazole”, J. Mater. Chem., 2012, 22, 8994-9005.
    37. F. Zhang; J. Fan; H. Yu; Z. Ke; C. Nie; D. Kuang; G. Shao; C. Su,“Nonplanar Organic Sensitizers Featuring a Tetraphenylethene Structure and Double Electron-Withdrawing Anchoring Groups”, J. Org. Chem., 2015, 80, 9034-9040.
    38. N. Miyaura; K. Yamada; H. Suginome; A. Suzuki, “Novel and Convenient Method for the Stereo- and Regiospecific Synthesis of Conjugated Alkadienes and Alkenynes via the Palladium-Catalyzed Cross-Coupling Reaction of 1-Alkenylboranes with Bromoalkenes and Bromoalkynes”, J. Am. Chem. Soc., 1985, 107, 972-980.
    39. D. Milstein; J. K. Stille, “A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium”, J. Am. Chem. Soc., 1978, 100, 3636-3638.
    40. A. Vilsmeier; A. Haack. Ber. dtsch. Chem. Ges. 1927, 60, 119–122..
    41. E. Knoevenagel, “Condensation von Malonsäure mit Aromatischen Aldehyden durch Ammoniak und Amine”, Ber. Dtsch. Chem. Ges., 1898, 31, 2596-2619.
    42. M. B. Desta; V. S. Nguyen; CH P. Kumar; S. Chaurasia; W.-T Wu; J. T. Lin; T.-C. Wei; E. W. Diau. “Pyrazine Incorporated Panchromatic Sensitizers for Dye Sensitized Solar Cells under One Sun and Dim Light”, J. Mater. Chem. A., 2018, DOI: 10.1039/C8TA04774J.

    QR CODE
    :::