跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭燿堃
Yao-kun Cheng
論文名稱: 在無線感測網路中分散式適應傳輸能量控制演算法
Distributed Adaptive Transmission Power Control Algorithm for Wireless Sensor Networks
指導教授: 許健平
Jang-ping Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 96
語文別: 英文
論文頁數: 34
中文關鍵詞: 能量消耗能量控制能量保存無線感測網路
外文關鍵詞: Energy consumption, power control, power saving, wireless sensor network
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線感測網路 (Wireless sensor networks)中電池能量的消耗決定了感測器可以工作的時間,因此控制能量的消耗在無線感測的研究上是一個重要的議題。在此論文中,我們提出了一個分散式傳輸能量的控制的演算法,此演算法不只是延長了感測器工作的時間,也維持了傳輸封包的成功率,除此以外也可以降低傳輸時封包碰撞的機率,在設計演算法之前,我們做了許多的實驗來發現在不同的傳送能量上影響封包成功率的因素來設計演算法。在演算法中感測器使用訊號強度指標(Received Signal Strength Indicator)與連結品質指標(Link Quality Indicator) 來決定對於鄰居感測器的傳送能量。演算法中的參數皆由實驗的結果來得出最佳的設定,由於環境是隨著時間的變化,以至於固定的傳送能量無法去適應環境的變化,因此在演算法中感應器可以動態的根據環境的變化來調整傳送封包的能量,來達到保證封包的成功率以及減少感測器能量的消耗,在最後實驗的結果顯示分散式能量控制演算法可以依據環境的變化來調整傳送的能量以及保證封包的成功率,在能量的節省上也有不錯的表現。


    In wireless sensor networks, senor nodes’ lifetime depend on their battery energy. Thus, the power saving on sensor nodes is a critical issue in wireless sensor networks. In this paper, we proposed a distributed adaptive transmission power control algorithm which cannot only prolong the lifetime of sensor nodes by saving the energy consumption but enhance the performance of packet delivery ratio. Besides, it can also reduce the interference between transmitting nodes. Before designing our algorithm, we firstly investigated the impact of link quality when utilizing different transmission power by analyzing lots of experimental data, and then design our algorithm based on those experimental results. In our algorithm, each node utilizes the RSSI (Received Signal Strength Indicator) value and LQI (Link Quality Indicator) value of the radio to determine the appropriate transmission power for its neighbors. Our algorithm can dynamically adjust the transmission power with the environment change. All of our experiments are implemented on the MICAz platform. The experimental results show that our algorithm can save power energy and guarantee a good link quality for each pair of communications.

    Chapter 1 Introduction 1 Chapter 2 Related Works 4 Chapter 3 Distributed Adaptive Transmission Power Control Algorithm 9 3.1 Initial Phase 10 3.2 Maintaining Phase 14 Chapter 4 Experimental Results 28 Chapter 5 Conclusions 31 References 32

    [1]G. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo, “Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp. 293-306, Boulder, USA, Nov. 2006.
    [2]L. H. A. Correia, D. F. Macedo, D. A. C. Silva, A. L. D. Santo, A. A. F. Loureiro and J. M. S. Nogueira, “Transmission Power Control in MAC Protocols for Wireless Sensor Networks,” in Proc. of ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Vol. 1, pp. 282-289, Quebec, Canada, Oct. 2005.
    [3]J. Jeong, D. E. Culler, and Jae-Hyuk Oh, “Empirical Analysis of Transmission Power Control Algorithms for Wireless Sensor Networks,” in Technical Report UCB/EECS-2005-16, http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-16.html.
    [4]M. Kubisch, H. Karl, A. Wolisz, L. C. Zhong, and J. Rabaey, “Distributed Algorithms for Transmission Power Control in Wireless Sensor Networks,” in Proc. of the IEEE Wireless Communications and Networking (WCNC) , Vol. 1, pp. 558-563, New Orleans, USA, Mar. 2003.
    [5]D. Lal, A. Manjeshwar, F. Herrmann, E. Uysal-Biyikoglu, and A. Keshavarzian, “Measurement and Characterization of Link Quality Metrics in Energy Constrained Wireless Sensor Networks,” in Proc. of IEEE Global Communications Conference (GLOBECOM), Vol. 1, pp. 446-452, San Francisco, USA, Dec. 2003.
    [6]O. Landsiedel, K. Wehrle, and S. Gotz, “Accurate Prediction of Power Consumption in Sensor Networks,” in Proc. of IEEE Embedded Networked Sensors (EmNetS-II), Vol. 1, pp. 37-44, Sydney, Aus, May. 2005.
    [7]S. Lin, J Zhang, G Zhou, L Gu, T He, and J A. Stankovic, “ATPC: Adaptive Transmission Power Control for Wireless Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp. 223-236, Colorado, USA, Nov. 2006.
    [8]S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar, “Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol,” in proc. of IEEE Decision and Control Conference, Vol. 2, pp. 1935-1940, 2001.
    [9]S. Panichpapiboon, G. Ferrari, O. K. Tonguz, “Optimal Transmit Power in Wireless Sensor Networks,” Proc. of IEEE Transactions on Mobile Computing, Vol. 5, pp. 1432-1447, Oct. 2006.
    [10]J. Polastre, J Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp.95-107, Baltimore, USA, Nov. 2004.
    [11]Q. Ren, and Q, Liang, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” in Proc. of IEEE Global Communications Conference (GLOBECOM), Vol. 1, St. Louis, USA, Nov. 2005.
    [12]M. G. Rezaie, V. S. Mansouri, and M. R. Pakravan, “Traffic Aware Dynamic Node Scheduling for Power Efficient Sensor Networks,” in proc. IEEE Intelliqent Sensors, Sensor Networks and Information Processing Conference (ISSNIP), pp. 37-42, Melbourne, Aus, Dec. 2004.
    [13]I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a Hybrid MAC for Wireless Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp.90-101, San Diego, USA, Nov. 2005.
    [14]D. Son, B. Krishnamachari, and J. Heidemann, “Experimental study of the effects of Transmission Power Control and Blacklisting in Wireless Sensor Networks,” in Proc. of the First IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON), Vol. 1, pp. 289-298, Santa Clara, Canada, Oct. 2004.
    [15]D. Son, B. Krishnamachari, and J. Heidemann, “Experimental Study of Concurrent Transmission in Wireless Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp. 237-250, Boulder, USA, Nov. 2006.
    [16]K. Srinivasan, and P. Levis, “RSSI is Under Appreciated,” in Proc. of IEEE the Third Workshop on Embedded Networked Sensors (EmNets), Harvard, May. 2006.
    [17]W. Ye, J. Heidemann, and D Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” in Proc. of INFOCOM, Vol. 3, pp. 1567-1576, New York, USA, Jun. 2002.
    [18]J. Zhao, and R. Govindan, “Understanding Packet Delivery Performance In Dense Wireless Sensor Networks,” in Proc. of ACM Conference on Embedded Networked Sensor Systems (Sensys), pp. 1-13, Los Angeles, Nov. 2003.
    [19]M. Zuniga, and B Krishnamachari, “Analyzing the Transitional Region in Low Power Wireless Links,” in Proc. of IEEE Sensor and Ad Hoc Communications and Networks (SECON), Vol. 1, pp. 517-526, Santa Clara, Canada, Oct. 2004.
    [20]CC2420 datasheet of Chipcom products from Texas instruments: Online available at: http://www.chipcon.com/files/CC2420_Data_Sheet_1_4.pdf, 2007.

    QR CODE
    :::