| 研究生: |
沈清正 Ching-Cheng Shen |
|---|---|
| 論文名稱: |
運用屬性導向歸納法的技術挖掘序列資料的廣義知識 Mining generalized knowledge from ordered data through attribute-oriented induction techniques |
| 指導教授: |
陳彥良
Yen-Liang Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 屬性導向歸納法 、概念階層 、資料挖礦 、關連式資料 、序列資料 、動態規劃法 |
| 外文關鍵詞: | Concept Hierarchy, Ordered Data Dynamic Programming, Data Mining, Attribute-Oriented Induction, Relational Data |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
屬性導向歸納法(簡稱為AOI方法)是最重要的資料挖礦方法的其中一種,AOI方法的輸入值包含一個關連式資料表和屬性相關的概念階層,輸出是任務相關資料所歸納之廣義特徵,雖然AOI方法用在廣義特徵的尋找非常有用,但它只能挖掘關連式資料的特徵,這些資料並不具有序列性,如果資料具有序列性,現有的AOI方法就無法找到廣義的知識,基於這個問題,本論文提出一種以AOI技術為基礎的動態規劃演算法,可以從序列資料中找到廣義的特徵,透過演算法的使用,我們可以發覺一串連續K筆的序列歸納tuples,它可以用來描述K個連續資料區段的廣義特徵,而K值是可以由使用者自行定義。
The attribute-oriented induction (AOI for short) method is one of the most important data mining methods. The input of the AOI method contains a relational table and a concept tree (concept hierarchy) for each attribute, and the output is a small relation summarizing the general characteristics of the task-relevant data. Although AOI is very useful for inducing general characteristics, it has the limitation that it can only be applied to relational data, where there is no order among the data items. If the data are ordered, the existing AOI methods are unable to find the generalized knowledge. In view of this weakness, this paper proposes a dynamic programming algorithm, based on AOI techniques, to find generalized knowledge from an ordered list of data. By using the algorithm, we can discover a sequence of K generalized tuples describing the general characteristics of different segments of data along the list, where K is a parameter specified by users.
Cai, Y., Cercone, N., Han, J., 1990. An attribute-oriented approach for learning classification rules from relational databases. In: Proceedings of Sixth International Conference on Data Engineering, pp. 281–288.
Carter, C.L., Hamilton, H.J., 1995. Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases. In: Proceedings of Seventh International Conference on Tools with Artificial Intelligence, pp. 486–489.
Carter, C.L., Hamilton, H.J., 1998. Efficient attribute-oriented generalization for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 10 (2), 193–208.
Chaudhuri, S., Dayal., U., 1997. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26, 65-74.
Chen, M.S., Han, J., Yu, P. S., 1996. Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866-883.
Cheung, D.W., Hwang, H.Y., Fu, A.W., Han, J., 2000. Efficient rule-based attribute-oriented induction for data mining. Journal of Intelligent Information Systems, 15 (2), 175-200.
Codd, E.F., Codd, S.B., Salley, C.T., 1993. Beyond decision support. Computer World, 27(30), 87-89.
Fayyad, U., Irani, K., 1993. Multi-interval discretion of continuous-values attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, Chambery, France, pp.1022-1029.
Hamilton, H.J., Hilderman, R.J., Cercone, N., 1996. Attribute-oriented induction using domain generalization graphs. In: Proceedings of Eighth IEEE International Conference on Tools with Artificial Intelligence, pp. 246–252.
Han, J., Cai, Y., Cercone, N., 1992. Knowledge discovery in databases: an attribute-oriented approach. In: Proceedings of International Conference on Very Large Data Bases (VLDB-92), pp. 547-559.
Han, J., Cai, Y., Cercone, N., 1993. Data-driven discovery of quantitative rules in relational databases. IEEE Transactions on Knowledge and Data Engineering, 5 (1), 29 –40.
Han, J., Fu, Y., 1994. Dynamic generation and refinement of concept hierarchies for knowledge discovery in database. In: Proceedings of AAAI''94 Workshop Knowledge Discovery in Database, Seattle, WA, pp.157-168.
Han, J., Fu, Y., 1995. Discovery of multiple-level association rule from large database. In: Proceedings of 21th International Conference on Very Large Data Bases, Zurich, Switzerland, pp.420-431
Han, J., Kamber, M., 2001. Data Mining: Concepts and Techniques, Academic Press.
Han, J., Nishio, S., Kawano, H., Wang, W., 1998. Generalization-based data mining in object-oriented databases using an object-cube model. Data and Knowledge Engineering, 25, 55-97.
Hu, X., Cercone, N., 1996. Mining knowledge rules from databases: a rough set approach. In: Proceedings of the Twelfth International Conference on Data Engineering, pp. 96–105.
Lu, W., Han, J., Ooi, B.C., 1993. Discovery of general knowledge in large spatial databases. In: Proceedings of 1993 Far East Workshop on Geographic Information Systems (FEGIS-93), pp. 275-289.
Kerber, R. 1992. Discretization of numeric attributes. In: Proceedings of Tenth national Conference on Artificial Intelligence, San Jose, California, pp.123-128.
Kaufman, L., P. J. Rousseeuw. 1990. Finding Group in data: An Introduction to Cluster Analysis. John Wiley & Sons, New York
MacQueen, J. 1967. Some methods for classification and ayalysis of multivariate observations. In: Proceedings of 5th Berkeley symp. Math. Statist. Prob., 1, pp.281-297.
McClean, S., Scotney, B., Shapcott, M., 2000. Incorporating domain knowledge into attribute-oriented data mining. International Journal of Intelligent Systems, 15 (6), 535-548.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
Shan, N., Hamilton, H.J., Cercone, N., 1995. GRG: knowledge discovery using information generalization, information reduction, and rule generation. In: Proceedings of the Seventh International Conference on the Tools with Artificial Intelligence, pp. 372–379.
Srikant, R. Agrawal. R. 1995. Mining generalized association rules. In: Proceedings of 21th International Conference on Very Large Data Bases, Zurich, Switzerland, pp.407-419.
Tsumoto, S., 2000. Knowledge discovery in clinical databases and evaluation of discovered knowledge in outpatient clinic. Information Sciences, 124 (1), 125-137.