| 研究生: |
陳秉豪 Bing-Hao Chen |
|---|---|
| 論文名稱: |
在存活分析中使用擴充風險模型二分一個連續型生物指標的方法 Method to Dichotomizing a Continuous Biomarker in Univariate Survival Analysis Using an Extended Hazard Model |
| 指導教授: |
曾議寬
Yi-Kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 二分法 、生物指標 、擴充風險模型 |
| 外文關鍵詞: | dichotomization, biomarker, extended hazard model |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床研究中,將連續的生物指標進行二分法是一個普遍的做法。二分法使得臨床醫生更容易在制定治療決策時,使用事件與生物指標之間的相關資訊。在過去的文獻中存在多種對連續生物指標進行二分法,其中最常用的兩種方法,一種是最小p值法,另一種則是以概似函數為基礎的方法。最小p值法是對一個連續生物指標的所有值進行二分法,並進行一系列檢定統計量分析後,再選擇與最大檢定統計量(或等價地,最小p值)相關的“最佳”切點。而以概似函數為基礎的方法則是將切點視為一個未知參數,並藉由概似函數值的最大值來找出最佳的切點。在風險迴歸中也可以運用前述的兩種方法來尋找生物指標的切點。方法是將生物指標透過切點區分成兩個風險組作為我們的共變量來進行風險迴歸。本文希望能夠使用EH擴充風險模型,並運用前述的最小p值法及以概似函數為基礎的方法來尋找生物指標最佳的切點。
Dichotomizing a continuous biomarker is a common practice in clinical research.
Dichotomizing make it easier for clinicians to use information about the relationship between an outcome and a baseline biomarker in making treatment decisions. Various methods exist in the literature for dichotomizing continuous biomarkers, of which the two most commonly used methods, one is the minimum p-value approach, and the other is likelihood-based approach. Minimum p-value approach uses a sequence of test statistics for all possible dichotomizations of a continuous biomarker, and it chooses the cutpoint that is associated with the maximum test statistic, or equivalently, the minimum p-value of the test. On the other hand, likelihood-based approach considers the cutpoint as an unknown parameter and find the best cutpoint by maximum likelihood. These two methods can be incorporated in the hazard regression by dividing the biomarkers into two groups through a cutpoint and treated as a hazard regression model. In this thesis, a semiparametric extended hazards model, which includes the Cox model and the AFT model as special cases is incorporated in the two methods to find the best cutpoint of a biomarker.
Abdolell, M., LeBlanc, M., Stephens, D., Harrison, R. V. (2002). Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable. Statistics in
Medicine 21:3395–3409.
Altman, D. G., Lausen, B., Sauerbrei, W., Schumacher, M. (1994). Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. Journal of the
National Cancer Institute 86:829–835.
Bender, R., Augustin, T., Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 24:1713–1723.
Ciampi, A., Etezadi-Amoli, J. (1985). A general model for testing the proportional hazards and the accelerated failure time hypotheses in the analysis of censored survival data with covariates. Communication in Statistics-Theory and Methods 14:651–667.
Cox, D. R. (1972). Regression models and life tables (with disscussion). Journal of the Royal Statistical Society Series B. 34:187–220.
Cox, D. R. (1975). Partial likelihood. Biometrika 62:269–276.
Cox, D. R., Oakes, D. (1984). Analysis of Survival Data. London: Chapman & Hall.
Faraggi, D., Simon, R. (1996). A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Statistics in Medicine 15:2203–2213.
Herr, H.W., Scheinfeld, J., Puc, H. S.,Heelan, R., Bajorin,D. F., Mencel, P., Bosl,G. J., Motzer, R. J. (1997). Surgery for a post-chemotherapy residualmass
in seminoma. Journal of Urology 157: 860–862.
Hilsenbeck, S. G., Clark, G. M., McGuire, W. L. (1992). Why do so many prognostic factors fail to pan out? Breast Cancer Research and Treatment 22:197–206.
Hilsenbeck, S. G., Clark, G. M. (1996). Practical p-value adjustment for optimally selected cutpoints. Statistics in Medicine 15:103–112.
Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter 9:129–132.
Jones, M. C., Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter 11:511–514.
Lausen, B., Schumacher, M. (1992). Maximally selected rank statistics. Biometrics 48:73–85.
Mazumdar, M., Glassman, J. R. (2000). Categorizing a prognostic variable: Review of methods, code for easy implementation and applications to decision-making
about cancer treatments. Statistics in Medicine 19:113–132.
Miller, R., Hallpern, J. (1982). Regression with censored data. Biometrika 69:521-531.
Miller, R., Siegmund, D. (1982). Maximally selected chi square statistics. Biometrics 38:1011–1016.
Molinari, N., Daures, J., Durand, J. (2001). Regression splines for threshold selection in survival data analysis. Statistics in Medicine 20:237-247.
Su, M., Fang, L., Su, Z. (2013). A likelihood and resampling based approach to dichotomizing a continuous biomarker. Journal of Biopharmaceutical Statistics 23:637–647.
Tseng, Y., Shu, K. (2011). Efficient estimation for a semiparametric extended hazards model. Communications in Statistics—Simulation and Computation 40:258–273.
Wick, W., Fricke, H., Junge, K., Kobyakov, G., Martens, T., Heese, O., Wiestler, B., Schliesser, M.G., Deimling, A.V., Pichler, J., Vetlova, E., Harting, I., Debus, J.,
Hartmann, C., Kunz, C., Platten, M., Bendszus, M., Combs, S.E. (2014). A Phase II, Randomized, Study of Weekly APG101 + Reirradia-tion versus Reirradiation in Progressive Glioblastoma. Clinical cancer research. 20:6304-6313.