| 研究生: |
劉國政 Guo-Jheng Liou |
|---|---|
| 論文名稱: |
添加鈹、鈧之LAZ1110鎂鋰合金經等通道彎角擠製後之微結構及機械性質研究 A study on the Microstructures and Mechanical properties ofLAZ1110 Mg-Li alloy containing Sc and Be after Equal Channel Angular Extrusion |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鎂鋰鋁鋅合金 、等通道彎角擠製 、微結構 、機械性質 |
| 外文關鍵詞: | Mg-Li-Al-Zn alloys, Equal channel angular extrusion, Microstructure, Mechanical properties |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以LAZ1110鎂合金為基本,添加微量Be、Sc元素,形成LAZ1110、LAZ1110+Sc、LAZ1110+Be及LAZ1110+Be,Sc四種合金,除了觀察添加微量Be、Sc元素對LAZ1110在微結構及機械性質的影響外,亦藉由等通道彎角擠製(ECAE)嘗試細化晶粒及探討擠製後之常溫機械性質、微結構的變化,並對ECAE後材料進行退火處理,觀察微結構及硬度值的變化。
比較四種原材之微結構,LAZ1110合金添加Sc,有晶粒細化的效果。LAZ1110合金添加Be,會產生兩種微結構的影響,晶粒粗大及費德曼組織。在機械性質部分,抗拉強度以LAZ1110+Be最高,達151 MPa,較LAZ1110+Sc的147 MPa高,在此以添加Be產生費德曼組織的析出強化效果較添加Sc的細晶強化好。
四種原材於室溫經ECAE後,LAZ1110合金經120°-RT-C4擠製後,晶粒從25μm細化至11μm,為原材的44%;LAZ1110+Sc合金經120°-RT-C4擠製後,晶粒從18μm細化至9.7μm,為原材的54%;LAZ1110+Be合金經120°-RT-C4擠製後,部分區域出現動態再結晶晶粒組織,大小約為5~20μm,LAZ1110+Be&Sc合金經120°-RT-C4擠製後,晶粒大小變化不大。在機械性質部分,最大抗拉強度出現在LAZ1110+Be經120°-RT-C4擠製後,達175.5 MPa,為原材的1.16倍,伸長率仍有69.7%。
四種材料經120°-RT-C4擠製後之試片,施以50、100、150、200及250℃×30min退火處理後,於LAZ1110+Be,250℃×30min退火條件下觀察到大面積的靜態再結晶,晶粒大小約為4.5μm,且費德曼組織消失。而四種材料退火硬度值於50℃呈現下降的趨勢,而後隨著溫度提升而有漸增的趨勢,50-200℃硬度值均呈平緩漸增,至250℃硬度值產生驟增的現象。
An unprecedented try of adding Sc and Be elements into Mg-Li alloys in order to enhance their strengths has been carried out and the results will be presented. Four Mg-Li alloys; a bare one (11%Li-1%Al-0.5%Zn), the second with Sc, the third with Be and the fourth with both Sc and Be were prepared by vacuum melting processes. They were then homogenized at 350℃, followed by an extrusion for plates. Microstructures and mechanical properties are studied on this as-extruded sample and those subsequently process by equal channel angular extrusion (ECAE) at room temperature.
The effect of adding Sc element to the LAZ1110 alloy was refining β grains. The addition of Be element produces two micro-structural effects, grain coarsening and Widmanstatten structure. On the mechanical properties, the maximum tensile strength obtained in LAZ1110+Be is 151MPa.This figure is better than the other of three alloys.
LAZ1110 alloy processed under condition, 120°-RT-C4, the size of β grains range from 25μm to 11μm. LAZ1110+Sc alloy processed under condition, 120°-RT-C4, the size of β grains range from 18μm to 9.7μm. LAZ1110+Be alloy processed under condition, 120°-RT-C4, some area of β phase can be find dynamic recrystallization grains. LAZ1110+Be&Sc alloy processed under condition, 120°-RT-C4, the change of β grains were small. On the mechanical properties, LAZ1110+Be alloy processed under condition, 120°-RT-C4,shows the greatest increase in tensile strength about 24.8 MPa.
【1】莊錦川, 「具備輕量化潛力的擠型鎂合金」, 鎂合金產業專欄,
2001年12月, pp.134。
【2】郭子強, 「熱處理對AZ91D鎂合金顯微組織與電化學性質影響之研究」, 國立成功大學, 碩士論文, 民國93年。
【3】翁仁斌, 「鎂合金固相回收之研究」, 中華大學, 碩士論文, 民
國95年。
【4】王建義, 「鎂合金板材之壓型(Press Forming)加工技術」,鎂合金產業專欄, 2001年2月, pp.133。
【5】林欣滿, 「添加鋁對鎂鋰合金特性影響之研究」, 逢甲大學, 碩士論文, 民國93年。
【6】張津、章宗和等, 「輕合金叢書-鎂合金及應用」, 化學工業出版社, 2004年11月。
【7】ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol. 6, 1985, pp. 425~434.
【8】賴耿陽,”非鐵金屬材料”,復漢出版社,新竹,1998,第174~191頁。
【9】C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325(2002), pp. 344~355.
【10】ASM, “Magnesium Alloys”, Metals Handbook 8th Edition, Vol. 8, 1976, pp. 314~319.
【11】B. Smola, I. Stul´ıkov´a, V. Oˇcen´aˇsek, J. Pelcov´a and V. Neubert, “Annealing effects in Al–Sc alloys”, Materials Science and Engineering A 462 (2007), pp.370–374.
【12】A. Bussib, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A, 302A(2001), pp.56.
【13】G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
【14】J. A. Chapman, D. V. Wilson: J. Inst. Metals, 91 (1962-63), pp.35.
【15】R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, 45 (2000) , pp.103-189.
【16】V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, “Russian Metallurgy”, (Engl. Transl.), Vol.1 (1981), pp.115.
【17】W. H. HAUNG, L. Chang, P. W. Kao and C. P. Chang, Materials Science and Engineering A 307 (2001), pp.113.
【18】M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi: Acta Mater., 47, (1999), pp.2047.
【19】V. M. Segal, USSR Patent No. 575892 (1997).
【20】Y. Iwahashi﹐J. Wang﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐Scripta Materialia, Vol. 35 (1996), pp.143~146.
【21】 K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence of channel angle on the development of ultrafine grains in equal-channel angular extrusion”, Acta Materialia, Vol. 46, No. 5 (1998), pp. 1589~1599.
【22】A. Shan﹐I. G. Moon﹐H. S. Ko﹐J. W. Park﹐ Scripta Materialia, Vol.41 (1999), pp.353~357.
【23】Y. Wu﹐I. Baker﹐Scripta Materialia, Vol.37 (1997), pp.437~442.
【24】H. S. Kim﹐Materials Science and Engineering, A315 (2001), pp.122~128.
【25】J. R. Bowen, A. Gholinia, S. M. Roberts and P. B. Prangnell, “Analysis of the billet deformation behavior in equal channel angular extrusion”, Mater. Sci. and Eng. , A287(2000), 87.
【26】Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “The process of grain refinement in equal-channel angular pressing”, Acta Mater. , 46(1998), pp.3317.
【27】M. Furukawa﹐Y. Iwahashi﹐Z. Horita﹐M. Nemoto﹐and T. G. Langdon﹐Materials Science and Engineering A257 (1998), pp. 328~332.
【28】K. Oh-ishi﹐Z. Horita﹐M. Furukawa﹐M. Nemoto and T. G. Langdon﹐Metal. Trans. A29 (1998), pp. 2245.
【29】J. C. Li, ,Appl., J. Phys., 33 2958 (1962).
【30】J. F. Humphreys, “Recrystallization and Recovery”, in Materials Science and Technology, ed. By R. W. Chan, P. Haasen and E. J. Kramer, Vol.15(1991), pp.371, VCH.
【31】D. Hull and D. J. Bacon, “Introduction to dislocation”, 3rd edition, Pergamon Press, 1984, pp.208.
【32】D. Magers and J. Willekens: Proc. Magnesium Alloys and Their Applications, ed. by B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Frankfurt, 1998, pp. 105-112.
【33】H. J. McQueem, N. D. Ryan, E. V. Konopleva and X. Xia: Can. Metall. Q., Vol. 34(3), 1995, pp. 219-229.
【34】T. Sakai and M. Ohashi, “The Effect of Temperature: J. Iron Steel Inst. Jpn., Vol. 67(11), 1981, pp. 2000-2009.
【35】T. Sakai and J. J. Jonas: Acta Metall., Vol. 32(2), 1984, pp. 189-209.
【36】J. P. Sah, G. J. Richardson and C. M. Sellars: Metal. Sci., Vol. 8(10), 1974, pp. 325-331.
【37】T. Mukai, H. Watanabe and K. Higashi, Materials Science Forum, Vol. 350-351 (2000), pp. 159-170.
【38】M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. G. Langdon, “Improving the superplastic properties of a two-phase Mg-8%Li alloy through processing by ECAP”, Materials Science and Engineering A 410-411(2005), pp. 439~442.
【39】T. Liu, S. D. Wu, S. X. Li, P. J. Li, “Microstructure evolution of Mg–14% Li–1% Al alloy during the process of equal channel angular pressing”, Materials Science and Engineering A 460–461 (2007), pp. 499–503.
【40】M. Furui, S. D. Wu, S. X. Li, P. J. Li, “Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP”, Acta Materialia 55 (2007), pp.1083–1091.
【41】T. Liu, W. Zhang, S. D. Wu, C. B. Jiang, S. X. Li, Y. B. Xu, “Mechanical properties of a two-phase alloy Mg–8%Li–1%Al processed by equal channel angular pressing ”, Materials Science and Engineering A360 (2003) , pp. 345-349.
【42】T. Liu, Y. D. Wang, S. D. Wu, R. L. Peng, C. X. Huang, C. B. Jiang, S. X. Li, “Textures and mechanical behavior of Mg–3.3%Li alloy after ECAP”, Scripta Materialia 51 (2004), pp. 1057–1061.
【43】J. C. Li, Appl. J. Phys., 33 2958 (1962).
【44】R. M. Treco, AIME Regional Conference on Reactive Metals, (1956), pp. 136.
【45】J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z.Valiev and T. G. Langdon, “An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size” Acta mater. 44 (1996), pp. 2973-2982.
【46】陳立文, “等通道彎角擠製之有限元素分析”,國立中央大學機械工程研究所,民國九十一年六月。
【47】G. S. Song, M. Staiger, M. Kral, “Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium”, Materials Science and Engineering A 371 (2004), pp.371–376.