跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何美蓉
Mei-Jung Ho
論文名稱: 利用福衛一號研究頂部電離層之電漿不規則體
指導教授: 葉惠卿
Huey Ching Yeh
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 間熱帶輻合區電漿泡
外文關鍵詞: Intertropical Convergence Zone, Plasma Bubble
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用福衛一號衛星之日地酬載電離層電漿電動效應儀(Ionospheric Plasma and Electrodynamics Instrument,簡稱IPEI) ,在西元2000至2002年(正值太陽活動極大年),地磁寧靜期(Kp?3)的觀測資料,針對季節、經度、地方時、地磁活動、太陽活動、地磁偏角(magnetic declination),地面天氣系統等影響電漿泡發生的因素進行逐項探討。
    針對全球電漿泡發生率的統計分析,獲得衛星所在的600公里高度頂部電離層,電漿泡發生率隨季節、經度、緯度、地方時、太陽活動期(F10.7)等因素的變化情形。尤其,對於全球電漿泡發生的季節特徵最為明顯的,涵蓋南大西洋磁場異常區(Southern Atlantic magnetic Anomaly,簡稱SAA)之大西洋經度區域和太平洋經度區域,都已獲得電漿泡發生機率分析結果。兩經度區域的特徵比較,有助於瞭解電漿泡發生的機制。
    針對赤道區電漿泡發生機率與電漿垂直漂移速度(等同於緯向電場)之相關性研究,發現電漿泡開始發生在地方時1900LT前後,約在緯向電場反轉(prereversal enhancement)後0.5至1小時之間。進一步研究四季反轉峰值與當地時的關係,判定大尺度電漿泡結構發生所需之向上離子漂移速度門檻值(threshold level)為20 m/sec。
    透過對於赤道區頂部電漿泡與低層大氣間熱帶輻合區(Intertropical Convergence Zone,簡稱ITCZ)之關聯性研究,發現電漿泡的季節極大發生率區與間熱帶輻合區劇烈降水區幾乎完全相符。並且這種空間的關連性不只是存在於季節平均數據所獲得的結果,也存在於月平均分佈圖型。作者利用2001年1月與2002年1月發生率分佈圖型,發現兩者間明顯的差異,與該兩年1月在巴西東北岸的雨量異常現象一致,成為低層大氣可以顯著的影響頂部電離層電漿泡發生的新證據。
    從上述離子密度、離子速度和間熱帶輻合區間的正向關連性,支持作者提出的低層大氣間熱帶輻合區的位置,和F層電漿向上離子速度的大小(?20m/s)兩者,都是影響早期日落後大尺度電漿泡發生的重要因素。


    Quiet time ion density depletions observed by the ROCSAT-1 IPEI payload during the solar maximum years of 2000-2002 were used to statistically study the effects of many parameters which are responsible for the generation of plasma bubbles. We examine how the occurrence rates of plasma depletions (bubbles) vary with local time, season, longitude, solar activity, magnetic activity, local magnetic declination, and weather system.
    Based on the morphology of plasma bubbles, we investigate the dependencies of bubble occurrence rates on season, latitude, longitude, local time, solar flux activity of topside ionosphere. In particular, we focus on the SAA longitude sector (270°E-360°E) and the Pacific longitude sector (150?E - 240?E), where the seasonal and longitudinal variations of the bubbles are most pronounced. The characteristic differences between the two longitude sectors will be helpful to reveal the mechanisms that generate plasma bubbles.
    We have examined the relationship between plasma depletions and upward ion drifts and found that the time of bubble onset is typically at local time ~ 1900 LT, about half to one hour after the post-sunset enhancement. We further studied the correlation between the pre-reversal peaks and the local times for all seasons to determine the threshold values of the upward ion drift (? 20 m/s) required for the occurrence of large-scale bubble structures.
    By investigation of the relationship between topside ionospheric plasma depletions and Inter-Tropical Convergence Zone (ITCZ), we found that the maximum occurrences of seasonal bubble structure are almost all collocated with the most intense rainfall regions of ITCZ. Such spatial correlation exists not only in the seasonal averaged data but also in the monthly averaged patterns, which is demonstrated by comparing the monthly bubble occurrence pattern of 2001 January with that of 2002 January. Significant differences in the bubble morphology between the two months were found to closely relate to the precipitation anomalies along the northeast coast of Brazil during the two different years, which provides further evidence that low altitude atmosphere can significantly affect the occurrence of the topside ionospheric plasma bubbles. The positive correlations among the spatial distributions of ion density, ion velocity and ITCZ suggest that both the location of ITCZ and the magnitude of upward ion drift (> 20 m/s) are the main factors to affect the occurrence of large-scale bubbles at early post sunset hours.

    目 錄 摘要 ....................... I Abstract ....................... III 致謝 ....................... V 目錄 ....................... VI 圖目錄 ....................... VIII 表目錄 ....................... XI 第一章 緒論..................... 1 1.1 電漿不規則體的產生及影響它分佈的參數... 1 1.2 南大西洋磁場異常區域........... 8 1.3 研究目的與內容概述............ 10 第二章 觀測儀器與資料簡介.............. 13 2.1 福爾摩沙一號衛星簡介........... 13 2.2 電離層電漿及電動效應儀簡介........ 14 2.3 分析資料簡介............... 18 第三章 廣義的R-T不穩定理論............. 26 第四章 全球電漿泡之發生率分析............ 29 4.1 電漿泡的軌道分佈............. 30 4.2 發生率與季節的關係............ 33 4.3 發生率與經度的關係............ 35 4.4 發生率與地方時的關係........... 37 4.5 結果與討論................ 39 第五章 南大西洋磁場異常區之電漿泡發生機率分析.... 48 5.1 發生機率與季節的關係........... 49 5.2 發生機率與地磁結構的關係......... 52 5.3 發生率與地方時的關係........... 53 5.4 結果與討論................ 55 第六章 赤道區電漿泡發生機率與電漿垂直漂移速度之相關性 64 6.1 垂直漂移速度與地方時的關係........ 65 6.2 最大向上漂移速度與季節的關係....... 68 6.3 最大向上漂移速度與太陽活動性的關係.... 71 6.4 結果與討論................ 72 第七章 赤道區頂部電漿泡與間熱帶輻合區之關聯性研究.. 79 7.1 間熱帶輻合區簡介............. 82 7.2 資料及分析................ 83 7.3季節平均關聯性.............. 87 7.4月平均關聯性............... 92 7.5 結果與討論................ 94 第八章 總結..................... 101 參考文獻........................ 103 附錄A 地球磁場計算模式............... 108

    Abdu, M. A., J. A. Bittencourt, and I. S. Batista, Magnetic declination control of the equatorial F region dynamo electric field development and spread F, J. Geophys. Res., 86, 11,443-11,446, 1981.
    Abdu, M. A., R. T. de Medeiros, J. A. Bittencourt, and I. S. Batista, Vertical Ionization Drift Velocities and Range Type Spread F in the Evening Equatorial Ionosphere, J. Geophys. Res., 88, A1, 399-402, 1983.
    Booker, H. G. and H. W. Wells, Scattering of radio waves by the F region of the ionosphere, Terr. Magn. Atmos. Electr., 43, 249-256, 1938.
    Chang, Y. -S., W. -L. Chiang, S. -Y. Ying, B. Holt, C. R. Lippincott, and K.-C. Hsieh, 1999: System architecture of the IPEI payload on ROCSAT-1, TAO, supplementary issue, 7-18.
    de La Beaujardiere, O. Editor, The C/NOFS Science Definition Team, Communication/Navigation Outage Forecasting System (C/NOFS) Science Plan, AFRL/VS-TR-2003-1501.
    Dungey, J. W., Convective diffusion in the equatorial F region, J. Atmos. Terr. Phys., 9, 304, 1956.
    Farley, D. T., B. B. Balsley, R. F. Woodman, and C. Calderon, Dependence of equatorial F region vertical drifts on season and solar cycle, J. Geophys. Res., 75, 7199-7210, 1970.
    Fejer, B. G., Low latitude electrodynamics plasma drift: A review., J. Atmos. Terr. Phys., 53, 677-693, 1991.
    Fejer, B. G., E. R. de Paula, L. Scherliess, 1999: Effects of vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res., 104, 19,859-19,869, 1999.
    Garcia, O., Atlas of highly reflective clouds for the global tropics: 1971-1983, U. S. Department of Commerce, NOAA, Environmental Research Laboratory, Boulder, Co, 365 pp, 1985. [NTIS PB-87129169.]
    Gustafsson, G., N. E. Papitashvili and V. O. Papitashvili, A revised corrected geomagnetic coordinate system for Epochs and 1990, J. Atmos. Terr. Phys., 54, 1609-1631, 1992.
    Hanson, W. B. and S. Sanatani, Relationship between Fe+ ions and equatorial spread F, J. Geophys. Res., 76, 7761-7768, 1971.
    Hanson, W. B., J. P. McClure, and D. L. Sterling, On the cause of Equatorial Spread F, J. Geophys. Res., 78, 2353-2356, 1973.
    Hedin, A. E., N. W. Spencer, and T. L. Killen, Empirical Global Model of Upper Thermosphere Winds Based on Atmosphere and Dynamics Explorer Satellite Data, J. Geophys. Res. 93, 9959-9978, 1988.
    Hedin, A. E., et al., Revised Global Model of Thermosphere Winds Using Satellite and Ground-Based Observations, J. Geophys. Res. 96, 7657-7688, 1991.
    Ho, M. J., H. C. Yeh, S. Y. Su, H. H. Ho, C. C. Fu, and R A Heelis, 2004: ROCSAT-1 Observations of Quiet-time Low-latitude Plasma Bubbles, 2004 Fall AGU Meeting held in San Francisco, Dec.13-17, 2004
    Ho, M. J., and H. C. Yeh: On the Relationship between Topside Ionospheric Plasma Depletions and Inter-Tropical Convergence Zone, submitted to TAO, 2006. Ref. # AA060403.
    Huang, C. S., and M. C. Kelley: Nonlinear evolution of equatorial spread F, 1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding, J. Geophys. Res., 101, 283-292, 1996.
    Huang, C. S., and M. C. Kelley, Nonlinear evolution of equatorial spread F, 4. Gravity waves, velocity shear, and day-to-day variability, J. Geophys. Res., 101, 24,521, 1996.
    Kil, H. and R. A. Hellis, Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, No. A1, 407-417, 1998.
    Kelly, M. C., M. F. Larsen, C. LaHoz, and J. P. McClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087, 1981.
    Kelley, M. C.: The Earth’s Ionosphere, Academic, San Diego, Calif, 1989.
    Kil, H., and R. A. Heelis, Equatorial density irregularity structures at intermediate scales and their temporal evolution, J. Geophys. Res., 103, 3969-3981, 1998.
    Lyon, A. J., N. J. Skinner, and R. W. Wright, Equatorial spread F at Ibadan, Nigeria, J. Atmos. Terr. Phys., 21, 100-119, 1961.
    Maruyama, T., and N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10,903, 1984.
    Mendillo, M., J. Baumgardner, X. Pi, and P. J. Sultan, Onset conditions for equatorial spread F, J. Geophys. Res., 97,13,865-13,867, 1992.
    McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and Hyosub Kil, Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29,119-29,135, 1998.
    Ott,E.,Theory of Rayleigh-Taylor Bubbles in the Equatorial Ionosphere, J. Geophys. Res., 83, A5,2066-2070, 1978.
    Oya, H. T, T. Takahashi, and S. Watanabe, Observations of Low Latitude Ionosphere by the Impedance Probe on Board the Hinotori Satellite, J. Geomag. Geoelectr., 38, 111-123, 1986.
    Rottger, J., The macro-scale structure of equatorial spread-F irregularities, J. Atmos. Terr. Phys., 38, 97-101, 1976.
    Rottger, J., Traveling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection, J. Atmos. Terr. Phys., 39, 987-998, 1977.
    Rottger, J., Drifting patches of equatorial spread-F irregularities-experimental support for the spatial resonance mechanism in the ionosphere, J. Atmos. Terr. Phys., 40, 1103-1112, 1978.
    Rottger, J., Equatorial spread F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43, 453, 1981.
    Sultan, P. J., Linear theory and modeling of the Rayleigh-Talor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, A12, 26,875-26,891, 1996.
    Tsunoda, R. T., Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere, J. Atmos, Terr. Phys., 42,743,1980
    Tsunoda, R. T., Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447, 1985.
    Watanabe, S. and H. Oya, Occurrence Characteristics of Low Latitude Ionosphere Irregularities Observed by Impedance Probe on Board the Hinotori Satellite, J. Geomag. Geoelectr., 38, 125-149, 1986.
    Waliser, D. E. and C. Gautier, A Satellite-Derived Climatology of the ITCZ, J. Climate, 6, 2162-2174, 1993.
    Waliser, D. E. and Wufeng Zhou, 1997: Removing satellite equatorial crossing time biases from the OLR and HRC data sets, J. Climate, 9, 2125-2146.
    Waliser, D. E., Tropical Meteorology: Intertropical Convergence Zone (ITCZ), Encyclopedia of Atmospheric Science, Edited by J. Holton, J. Pyle, J. Curry Academic Press, 2002.
    Wallace, J. M., T. P. Mitchell, and A. K.-H. Lau, July 1995: Legates/MSU precipitation climatology.
    (from http://tao.atmos.washington.edu/legates_msu/index.html).
    Waple, A. M., J. H. Lawrimore, M. S. Halpert, G. D. Bell, W. Higgins, B. Lyon, M. J. Menne, K. L. Gleason, R. C. Schell, J. R. Christy, W. J. Wright, M. J. Salinger, L. Alexander, R. S. Stone, and S. J. Camargo, June 2002: Climate Assessment for 2001, Monthly report for American Meteorological Society.
    (from http://www.ncdc.noaa.gov/oa/climate/research/2001/perspectives.html)
    Yeh, H. C., Characteristic of the IPEI Payload Onboard ROCSAT-1, National Central University, 1998.
    Yeh, H. C., S. Y. Su, Y. C. Yeh, J. M. Wu, R. A. Heelis and B. J. Holt, Scientific Mission of the IPEI Payload Onboard ROCSAT-1, TAO supplementary issue, 19-42, 1999a.
    Yeh, H. C., S. Y. Su, R. A. Heelis and J. M. Wu, The ROCSAT-1 IPEI preliminary results: Vertical ion drift statistics, TAO, Vol. 10, 805-820, 1999b.
    Yeh, H. C., M. J. Ho, S Y Su, C. M. Huang, H. H. Ho, W. F. Hun, C. C. Fu, C. H. Huang, and R A Heelis, 2003: F-region Ionospheric Irregularities Observed by ROCSAT-1 in the South Atlantic Anomaly Longitude Sector, 2003 Fall AGU Meeting held in San Francisco, Dec.9-13, 2003.

    QR CODE
    :::