跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張興華
Xing-Hua Zhang
論文名稱: 高分子摻雜於有機發光二極體之應用
Doping in Polymers for Organic Light Emitting Diodes
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 89
語文別: 中文
論文頁數: 142
中文關鍵詞: 有機發光二極體高分子摻雜有限摻雜源之染料擴散熱轉印法
外文關鍵詞: OLEDs, Doping, Finite-source dye-diffusion therm
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 在這本論文中,我們利用有限摻雜源之染料擴散熱轉印法(Finite-source dye-diffusion thermal transfer,FS-D2T2) 可對已形成之高分子薄膜進行橫向局部的摻雜以及縱向摻雜的控制。在進行FS-D2T2時,將被轉印膜與轉印源薄膜直接緊密接觸,透過加熱擴散的方式,使染料轉印至被轉印膜。我們分別在poly(N-vinylcarbazole) (PVK)或poly (N-vinylcarbazole): 2-(4—biphenyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PVK: PBD)的系統中進行了一連串的染料擴散實驗,而且證明可利用Fick’s擴散理論來模擬染料的擴散行為。另一方面在有機蒸氣的環境中,摻雜染料在低於高分子的玻璃轉換溫度下即能做有效的擴散。此效應使得高玻璃轉換溫度的高分子及更多的的摻雜材料能用於有限摻雜源之染料擴散熱轉印法。
    利用有限摻雜源之染料擴散熱轉印法方便調控的特性,我們可對高分子中的摻雜材料做橫向及縱向的調制。在橫向的調制中,用來做高分子有機發光元件色彩的整合而達到製作多彩元件的目的。而在縱向的調制中,利用摻雜材料的淺摻雜分布可降低摻雜材料的載子陷阱效應。另一方面在本論文中還提出一可填充式的熱轉印方法,以容許重複使用D2T2的熱轉印源。
    為了獲得低驅動電壓及高效率的元件,需要增進電荷注入的能力。一個有效的方法是對有機半導體薄膜作導電性摻雜。在本論文的最後,我們探討利用SbCl5對高分子PVK 作導電性摻雜,並將其用為有機發光元件中之電洞注入層。我們發現摻雜了SbCl5的PVK可大幅增進電洞自陽極注入有機層的能力。


    Doping is an important technology for electronic imaging and optoelectronic devices based on molecular or polymeric materials. Emissive doping is usually used for tuning emission colors and enhancing luminescence efficiency. For the versatility in the device structures and the integration of different devices on a substrate, it usually requires the capability to laterally and vertically modulate the distribution of dopants in organic films. In molecular devices fabricated by vacuum deposition, lateral modulation of compositions can be implemented by switchable shadow masking, and vertical modulation is achieved by controlling the co-deposition sequences. However, in organic devices incorporating molecularly doped polymers (MDPs), the conventional blending process can only produce uniform dispersion of dyes throughout the polymer layer, providing no spatial selectivity of dopant distribution.
    In this thesis, we propose finite-source dye-diffusion thermal transfer (FS-D2T2) for performing controllable doping of polymer films. In this process, the polymer receiver film is placed in direct contact with the dye-dispersed polymer donor film to permit direct dye-diffusion thermal transfer. We perform a series of experiments of dye diffusion in the poly(N-vinylcarbazole) (PVK) or the poly (N-vinylcarbazole): 2-(4—biphenyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PVK: PBD) matrix systems and show that it can be modeled by Fick’s diffusion theory. We have also shown that in an atmosphere of organic solvent vapor, effective dye-diffusion thermal transfer may be enhanced at temperatures much below Tg of host glassy polymers. Such an effect may permit polymers of higher Tg and wider ranges of dye molecules to be used in the D2T2 process for electronic imaging applications.
    By using finite-source dye-diffusion thermal transfer process , we demonstrate lateral and vertical modulation of dopant distribution in polymer films. Lateral modulation of dopant distribution was applied to the color integration of OLED devices. Vertical modulation of dopant distribution was used to reduce carrier trapping effect caused by the emissive dopants in the device. To permit repeated use of the D2T2 source plate, a method of rechargeable thermal transfer stamping was also introduced. Furthermore, we demonstrated the enhancement of device performance with small molecule/FS-D2T2 doped polymer hybrid heterostructures.
    In order to achieve low driving voltage and high efficiency in OLED devices, it is necessary to facilitate the injection of charges. One effective approach to enhance carrier injection is to conductively dope the organic layer. In this thesis, we investigated the SbCl5-doped PVK as a conductively doped polymer, and its use as a hole-injection material in OLEDs. It is found that SbCl5-doped PVK is an effective hole-injection material for both polymer or small-molecule based OLED devices.

    Cover Contents Chapter 1: Introduction 1.1 Overview of Organic Electroluminescence 1.2 Basic Concepts of OLEDs 1.3 Emissive and Conductive doping in OLEDs 1.4 Thesis Organization Chapter 2: Effect of Emissive Doping into an Emissive Polymer 2.1 Introduction 2.2 Experiment Methods 2.3 Optical Properties of Blend Thin Films 2.4 Summary Chapter 3: Finite-Source Dye-Diffusion Thermal Transfer for Doping of Polymer Thin Films 3.1 Introduction 3.2 Experiment Meth ods 3.3 Theoretical Simulation 3.4 Results and Discussions 3.5 Summary Chapter 4: Spatial Modulation of Dopant Distribution in Polymer Films for OLEDs 4.1 Introduction 4.2 Experiment Methods 4.3 Conventional Blend Doping vs. FS-D2T2 Doping 4.4 Lateral Modulation of Dopant Distribution in Polymer Films for OLEDs 4.5 Vertical Modulation of Dopant Distribution in Polymer Films for OLEDs 4.6 Rechargeable Thermal Transfer Stamping 4.7 Summary Chapter 5: Conductively Doped Polymers as the Hole -Injection Layer in OLEDs 5.1 Introduction 5.2 Experiment 5.3 Results and Discussion 5.4 Summary Chapter 6: Conclusion and Future Work R

    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38 , 2042(1963).
    [2] W. Helfrich and W.G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
    [3] N.V. Vityuk, V.V. Mikho, Sov. Phys. Semicond. 6 , 1479 (1973).
    [4] P.S. Vincent, W.A. Barlow, R.A. Hann, G.G. Roberts, Thin Solid Films 94, 476 (1982).
    [5] G.G. Roberts, M.McGinnity, P.S. Vincent, W.A. Barlow, Solid State Commun. 32, 683 (1979).
    [6] R. H. Partridge, Polymers 24, 734 (1983).
    [7] C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    [8] C.W. Tang, S.A. Vanslyke and C.H. Chen, J. Appl. Phys. 65,3610 (1989).
    [9] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys, 27, L289 (1988).
    [10] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys, 27, L713 (1988).
    [11] C. Adachi, S. Tokito, T. Tsutsui, Acta Polymerica , 170, 215(1990).
    [12] H. Kubota, S, Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, T. watanabe, H, Ochi, T. Sakamoto, T. Miyake, M. Tsuchida, I. Ohshita, T. Tohma. J. Lumin. 87-89 , 56 (2000).
    [13] J. Kido, Phys. World 12(3), 27 (1990).
    [14] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. MacKay, R.H. Friend, P.L. Burn, and A.B. Holmes, Nature 347, 539 (1990).
    [15] J.R. Visser, Philips J. Res. 51, 467 (1998).
    [16] R.H. Friend, J. Burroughes, T. Shimoda, Phys. World 12(6), 35(1999).
    [17] G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter and A.J. Heeger, Nature 357, 477 (1992).
    [18] E. Westerweele, P. Smith and A.J. Heeger, Adv. Mater. 7, 788 (1995).
    [19] G. Yu, K. Pakbaz and A.J. Heeger, J. Electron. Materials 23, 925 (1994).
    [20] G. Yu, C. Zhang, and A.J. Heeger, Appl. Phys. Lett. 64, 1540 (1994).
    [21] A.J. Heeger and J. Long Jr., Optics & Photonic News, 23 (Aug., 1996).
    [22] C.N. King, J. SID 4, 1 (1996).
    [23] T. Hirose, K. Kariya, M. Wakitani, A. Otsuka and T. Shinoda, SID Digest of Technical Papers, 279 (1996).
    [24] F. Courreges, SID Digest of Technical Papers, 45 (1996).
    [25] G.Gu, P.E. Burrows, S. Vankatesh and S.R. Forrest, Opt. Lett. 22, 172 (1997).
    [26] C. Adachi, T. Tsutsui and S. Saito, Optoelectron. Devices Technol. 6, 25 (1991).
    [27] C. Hosokawa, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
    [28] R. S. Deshpande, V. Bulovic´ and S. R. Forrest, Appl. Phys. Lett. 75, 888 (1999).
    [29] Y. Sato, S. Ichinosawa, T. Ogata, M. Fugono, and Y. Murata, Synth. Metals 111-112, 25 (2000).
    [30] Z.-J. Ni, P.-F. Yang, D. K. P. Ng, Y.-L. Tzeng and T.-Y. Luh, J. Am. Chem. Soc. 112, 9356 (1990).
    [31] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R.Forrest, Appl.
    Phys. Lett. 75, 4(1994).
    [32] L.J. Rothberg and Andrew J. Lovinger, J. Mater. Res. 11,3174(1996).
    [33] Andrei A. Shoustikov, Yujian You, and Mark E. Thompson, IEEE. J. Sel. Top. Quantum. Electron. 4, 3 (1998).
    [34] Andrew Gilbert, Essentials of Molecular Photochemistry, Oxford, U.K., 1991.
    [35] D.J Williams, Photoconductivity in Polymers, Technomic Press, Westport,
    Connecticut.
    [36] N. Bartlett, R. N. Biagioni, B. W. McQuillan, A. S. Robertson, and A. C. Thompson, Chem. Commun. 200 (1978).
    [37] C. K. Chiang et al., Appl. Phys. Lett. 33, 18 (1978).
    [38] G. B. Street and T. C. Clarke, IBM J. RES. DEVELOP. 25, 51 (1981).
    [39] Andrew Gilbert, Essentials of Molecular Photochemistry, Oxford, U.K., 1991.
    [40] J. A. G. Drake (ed.), Chemical Technology in Printing and Imaging Systems, Royal Society of Chemistry, Cambridge, UK (1993).
    [41] J. Crank, The mathematics of Diffusion, Oxford University Press, Oxford, UK (1975).
    [42] D. Ehlich and H. Sillescu, Macromolecules 23, 1600 (1990).
    [43] P. F. Nealey, R. E. Cohen, and A. S. Argon, Macromolecules 26, 1287 (1993).
    [44] J. Bicerano, Prediction of Polymer Properties, 2nd ed., Marcel Dekker, New York (1996).
    [45] J. A. G. Drake (ed.), Chemical Technology in Printing and Imaging Systems, Royal Society of Chemistry, Cambridge, UK (1993).
    [46] C. C. Wu, C. C. Yang, H. H. Chang, C. W. Chen, and C. C. Lee, Appl. Phys. Lett. 77, 794 (2000)
    [47] H. H. Chang, C. C. Wu, C. C. Yang, C. W. Chen, and C. C. Lee, Appl. Phys. Lett. 78, 574 (2001)
    [48] J. M. Zielinski, G. Heuberger, H. Sillescu, U. Wiesner, A. Heuer, Y. Zhang and H. W. Spiess, Macromolecules 28, 8287 (1995)
    [49] D. D. Deppe, A. Dhinojwala, and J. M. Torkelson, Macromolecules 29, 3898 (1996)
    [50] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
    [51] Y. Mori, C. Aoyagi, H. Endo, Y. Hayashi and T. Dozono, Polymer Prepr., Jpn. 40, 3591 (1991).
    [52] T. Mori, K. Miyachi, and T. Mizutani, J. Phys D 28, 1461 (1995).
    [53] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
    [54] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 63, 2627 (1993).
    [55] C.C. Wu, C.I. Wu, J.C. Strum and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
    [56] J.S. Kim, M. Granstrom, and R.H. Friend, J. Appl. Phys. 84, 6859 (1998).
    [57] C. C. Wu, J. C. Sturm, R. A. Register, J. Tian, E. P. Dana, and M. E. Thompson, IEEE Trans. Electron Devices ED-44, 1269 (1997).
    [58] D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher, and D. D. C. Bradley, Synth. Met. 82, 141 (1996).
    [59] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett. 72, 519 (1998).
    [60] T. R. Hebner and J. C. Sturm, Appl. Phys. Lett. 73, 1775 (1998).
    [61] J. Bharathan and Y. Yang, Appl. Phys. Lett. 72, 2660 (1998).
    [62] T. Shimoda, S. Kanbe, H. Kobayashi, S. Seki, H. Kiguchi, I. Yudasaka, M. Kimura, S. Miyashita, R. H. Friend, J. H. Burroughes and C. R. Towns, Symposium proceeding of Society for Information Display, 376, San Jose, California (1999).
    [63] F. Pschenitzka and J. C. Sturm, Appl. Phys. Lett. 74, 1913 (1999).
    [64] J. Yang and J. Shen, J Appl. Phys 84, 2105 (1998).
    [65] M. Uchida, C. Adachi, T. Koyama, and Y. Taniguchi, J. Appl. Phys. 86, 1680 (1999).
    [66] J. Littman and P. Martic, J. Appl. Phys. 72, 1957 (1992).
    [67] W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
    [68] A. R. Brown, D.D.C. Bradley, J.H. Burroughes, R.H. Friends, N.C. Greenham, P.L. Burn, A.B.Holmes, and Kraft, Appl. Phys. Lett. 61, 2793 (1992).
    [69] D. Braun, and A.J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
    [70] J.C. Scott, S.A.Carter, S. Karg and M. Angelopoulos, Synth. Met. 85, 1197 (1997).
    [71] R. H. Partridge UK Pat. 74/44704, 1974; Chem. Abstr. 86 11261 (1974).
    [72] Y. Matsumoto, Bull. Kyushu Inst. Tech. (M. & N.S.) 22, 69 (1975).
    [73] I.D. Parker, J. Appl. Phys. 75, 1656(1994).
    [74] R. H. Friend et al., Nature(London) 397, 121 (1999).
    [75] Y.Yang, E. Westerweele, C.Zahng, P. Smith, and A.J. Heeger, J. Appl. Phys, 77, 694 (1995).

    QR CODE
    :::