跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡詠昕
Yong-xin Hu
論文名稱: 改善功率承受能力之微波/毫米波開關電路
Improved Power Handling Capability of Microwave/Millimeter Wave Switch Circuit
指導教授: 辛裕明
Yue-ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 寬頻開關電路功率承受能力插入損失開關電路
外文關鍵詞: broadband switch circuit, power handling capability, insertion loss, switch circuit
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以CMOS製程來實現微波開關電路的設計,主要是因為跟三五族製程比較起來,CMOS製程擁有低成本及高度整合性的優點,且製程的技術逐漸進步,可以藉此設計出高頻或者是高功率的電路。但是設計高功率開關電路的難處在於CMOS製程材料本身的崩潰電壓較低,且使用的基板為低阻值基板,這會使得電晶體本身的寄生電容增加,而影響到開關電路的特性。為了能夠提升開關電路的特性,使用了在基底、Deep N-well及基板給予適當偏壓的技術來改善開關電路的功率承受能力。
    首先,以CMOS製程設計出1.9 GHz高功率開關電路,其功率承受能力可以達到36 dBm,但是其插入損失大於3 dB。因此,為了能有所改善插入損失,於是把電晶體串聯的數目及尺寸加以減少,來降低電晶體本身的寄生電容。發射端電路的插入損失在1.9 GHz下,可改善至1.9 dB,功率承受能力可以達到34 dBm。
    此外利用90 nm CMOS製程設計出寬頻(20 – 70 GHz)的開關電路,此電路使用雙閘極電晶體來改善開關電路的功率承受能力及切換速度。在30 GHz下,功率承受能力達到19 dBm,開關電路的切換速度可以達到10 Gbps。
    最後則是以氮化鎵製程來實現高功率開關電路的設計,使用傳統的串並式架構,藉由電感與電晶體本身的寄生電容達成匹配的效果。其功率承受能力在2 GHz下,輸入功率達到35.5 dBm時,為1 dB壓縮點。


    Standard CMOS technology was used to design microwave switch circuits in this thesis. The main reason is that CMOS technology demonstrates some advantages, such as low cost and high integration capability, while compared with Ⅲ-Ⅴ semiconductor technology. The advance of CMOS technology can be used for high-frequency or high-power application. However, it is hard to design high-power switch circuits due to the low breakdown voltage of CMOS. The low resistance of silicon substrate increases the parasitic capacitance of transistor and degrades the switch circuit performance. In order to improve power handling capability of switch circuit, a new bias methodology in body/Deep N-well/substrate, has been proposed in this thesis.
    In the beginning, a high power CMOS switch operated at 1.9 GHz was presented with the measured P1dB compression point of 36 dBm but insertion loss of > 3 dB was achieved. Therefore, a revised CMOS switch with decreased transistor numbers in series sub-circuit and scaled down transistor size to decrease parasitic capacitance of transistor and thus improve insertion loss was proposed. When parasitic capacitance was decreased, the insertion loss was improved. So, insertion loss of transmit mode was improved to 1.9 dB and power handling capability remained 34 dBm at 1.9 GHz.
    Moreover, a wideband switch design (20 – 70 GHz) in 90 nm CMOS technology using dual-gate transistors was proposed. The power handling of 19 dBm and switching rate of 10 Gbps was observed at 30 GHz.
    Finally, a high power switch circuit design based on GaN process was designed and fabricated. The conventional series-shunt structure and matching network technique were used in this high power GaN switch. The power handling of 35.5 dBm was measured at 2 GHz.

    摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 XI 第一章 導論 1 1.1研究動機 1 1.2 相關研究發展 2 1.3量測系統架構簡介 4 1.4 章節簡述 7 第二章 1.9 GHz 高功率CMOS 微波開關電路 8 2.1 簡介 8 2.2高功率CMOS 微波開關電路 9 2.2.1基底浮接技術及給予基底負偏壓技術 9 2.2.2電路設計 11 2.2.3量測與模擬結果 14 2.3 CMOS元件模型改善 19 2.4改善插入損失之高功率CMOS微波開關電路 31 2.4.1改善插入損失技術 31 2.4.2接收端電路設計考量 40 2.4.3電路設計 43 2.4.4量測結果 45 2.5結論 52 第三章 寬頻20 ~ 70 GHz CMOS微波開關電路設計 53 3.1 簡介 53 3.2寬頻微波開關電路架構介紹 53 3.3運用雙閘極電晶體改善CMOS開關的功率承受能力 54 3.4運用雙閘極電晶體改善CMOS開關的切換速度 57 3.5使用Transmission Gate電路架構更加提升切換速度之技巧 63 3.6寬頻20 ~ 70 GHz CMOS微波開關電路設計 65 3.6.1電路設計 65 3.6.2模擬與量測結果 66 3.6.3切換速度模擬與量測結果 69 3.7結論 75 第四章 高功率氮化鎵微波開關電路設計 76 4.1 簡介 76 4.2氮化鎵微波開關電路設計 76 4.2.1電路設計 76 4.2.2模擬與量測結果 80 4.3 結論 88 第五章 結論 89 參考文獻 90

    [1] H. Tosaka, T. Fujii, K. Miyakoshi, K. Ikenaka, and M. Takahashi, “An Antenna Switch MMIC Using E/D mode p-HEMT for GSM/DCS/PCS/WCDMA Bands Application,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2003, pp. 5-8.
    [2] K. Numata, Y. Takahashi, T. Maeda, and H. Hida, “A 2.4/0 V Controlled High Power GaAs SPDT Antenna Switch IC for GSM application,” in IEEE RFIC Symp. Dig., 2002, pp. 141-144.
    [3] A. Minsik, L. Chang-Ho, K. Byung-Sung, and J. Laskar, “3W SPDT Antenna Switch Design Using Standard 0.18 ?m CMOS Process,” 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 555-558.
    [4] K. Hyun-Woong, A. Minsik, L. Ockgoo, L. Chang-Ho, and J. Laskar, “A high power CMOS Differential T/R Switch using Multi-section Impedance Transformation Technique,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2010, pp. 483-486.
    [5] Jih-Hsin Wang, Hsieh-Hung Hsieh, and Liang-Hung Lu, “A 5.2.GHz CMOS T/R Switch for Ultra-Low-Voltage Operations,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no.8, pp. 1774-1782, Aug. 2008.
    [6] C. M. Ta, E. Skafidas, and R. J. Evans, “A 60-GHz CMOS Transmit/Receive Switch,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp, June 2007, pp. 725-728.
    [7] A. Minsik, K. Hyun-Woong, L. Chang-Ho, and J. Laskar, “A 1.8-GHz 33-dBm P0.1-dB CMOS T/R Switch Using Stacked FETs With Feed-Forward Capacitors in a Floated Well Structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no.11, pp. 2661-2670, Nov. 2009.
    [8] Xue-Jun Li and Yue-Ping Zhang, “ Flipping the CMOS Switch ” IEEE Microwave Magazine, , vol. 11, no.1, pp. 86-96, Feb. 2010.
    [9] Mei-Chao Yeh, Zuo-Min Tsai, Ren-Chieh Liu, K. Y. Lin, Ying-Tang Chang, and Huei Wang, “ Design and Analysis for a Miniature CMOS SPDT Switch Using Body-Floating Technique to Improve Power Performance ” IEEE Transactions on Microwave Theory and Techniques, , vol. 54, no.1, pp. 31-39, Jun. 2006.
    [10] A. Minsik, L. Chang-Ho, K. Byung Sung, and J. Laskar, “A High-Power CMOS Switch Using A Novel Adaptive Voltage Swing Distribution Method in Multistack FETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no.4, pp. 849-858, Apr. 2008.
    [11] X. Haifeng and K. O. Kenneth, “A 31.3-dBm Bulk CMOS T/R Switch Using Stacked Transistors With Sub-Design-Rule Channel Length in Floated p-Wells,” IEEE Journal of Solid-State Circuits, vol. 42, no.11, pp. 2528-2534, Nov. 2007.
    [12] A. Minsik, L. Chang-Ho, and J. Laskar, “CMOS High Power SPDT Switch using Multigate Structure,” IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007. 2007, pp. 3283-3286.
    [13] A. Minsik, K. Byung Sung, L. Chang-Ho, and J. Laskar, “A High Power CMOS Switch Using Substrate Body Switching in Multistack Structure,” IEEE Microwave and Wireless Components Letters, vol. 17, no.9, pp. 682-684, Sep. 2007.
    [14] A. Oncu, K. Takano, and M. Fujishima, “8Gbps CMOS ASK modulator for 60GHz wireless communication,” IEEE ASSCC Conf., pp. 125-128, NOV. 2008.
    [15] S. F. Chao, H. Wang, C. Y. Su, and J. G. J. Chern, “A 50 to 94 GHz CMOS SPDT Switch Using Traveling-Wave Concept,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 130-132, Feb. 2007.
    [16] Hong-Yeh Chang and Ching-Yan Chan, “A Low Loss High Isolation DC-60 GHz SPDT Traveling-Wave Switch With a Body Bias Technique in 90 nm CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 82–84, Feb. 2010.
    [17] K. Hettak, T. Ross, J. Wight, and G. Morin, “DC to 70 GHz 90 nm 3D CMOS SPDT using Elevated CPW and CPS Series Stubs,” 2011 IEEE MTT-S International Microwave Symposium Digest, June 2011, pp. 1-4.
    [18] L. Ruei-Bin, K. Jhe-Jia, and W. Huei, “A 60-110 GHz Transmission-Line Integrated SPDT Switch in 90 nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 85-87, Feb. 2010.
    [19] M. Uzunkol and G.M. Rebeiz, “A Low-Loss 50–70 GHz SPDT Switch in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 82-84, Feb. 2010.
    [20] B. Cetinoneri, Y.A. Atesal, and G.M. Rebeiz, “A Miniature DC-70 GHz SP4T Switch in 0.13-μm CMOS,” 2009 IEEE MTT-S International Microwave Symposium Digest, June 2009, pp. 1093-1096
    [21] V.S. Kaper, R.M. Thompson, T.R. Prunty, and J.R. Shealy, “Signal Generation, Control, and Frequency Conversion AlGaN/GaN HEMT MMICs,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no.1, pp. 55-65, Jan. 2005.
    [22] F. McGrath, C. Varmazis, C. Kermarrec, and R. Pratt, “Novel High Performance SPDT Power Switches Using Multi-Gate FET''s,” 1991 IEEE MTT-S International Microwave Symposium Digest, July 1991, pp. 839-842.
    [23] C.F. Campbell and D.C. Dumka, “Wideband High Power GaN on SiC SPDT Switch MMICs,” 2010 IEEE MTT-S International Microwave Symposium Digest, May 2010, pp. 145-148.
    [24] M. Hirose, Y. Takada, M. Kuraguchi, T. Sasaki, and K. Tsuda, “A 1.9 GHz SPDT Switch Implemented With GaN HFETs Featuring Two Different Depth-Recesses In i-AlGaN,” IEEE Compound Semiconductor Integrated Circuit Symposium, Oct. 2004, pp. 163-166.
    [25] H. Ishida, Y. Hirose, T. Murata, Y. Ikeda, T. Matsuno, K. Inoue, Y. Uemoto, T. Tanaka, T. Egawa, and D. Ueda, “A High-Power RF Switch IC Using AlGaN/GaN HFETs With Single-Stage Configuration,” IEEE Compound Semiconductor Integrated Circuit Symposium, Aug. 2005, pp. 1893-1899.
    [26] B.Y. Ma, K.S. Boutros, J.B. Hacker, and G. Nagy, “High Power AlGaN/GaN Ku-band MMIC SPDT Switch and Design Consideration,” 2008 IEEE MTT-S International Microwave Symposium Digest, June 2008, pp. 1473-1476.
    [27] A. Bettidi, A. Cetronio, M. De Dominicis, G. Giolo, C. Lanzieri, A. Manna, M. Peroni, C. Proietti, and P. Romanini, “High Power GaN-HEMT Microwave Switches for X-Band and Wideband Applications,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp, 2008, pp. 329-332.
    [28] V. Alleva, A. Bettidi, A. Cetronio, M. De Dominicis, M. Ferrari, E. Giovine, C. Lanzierf, E. Limiti, A. Megna, M. Peroni, and P. Romaninf, “High Power Microstrip GaN-HEMT Switches for Microwave Applications,” Microwave Integrated Circuit Conference, EuMIC, Oct. 2008, pp. 194-197.
    [29] M. Yu, R.J. Ward, and G.M. Hegazi, “High Power RF Switch MMICs Development in GaN-on-Si HFET Technology,” IEEE Radio and Wireless Symposium, Jan. 2008, pp. 855-858.
    [30] G. Palumbo and M. Pennisi, “Design Guidelines for High-Speed Transmission-Gate Latches: Analysis and Comparison,” IEEE International Conference on Electronics, Circuits and Systems, 2008, pp. 145-148.
    [31] A. Baliga and D. Yagain, “Design of High Speed Adders Using CMOS and Transmission Gates in Submicron Technology: A Comparative Study,” 2011 4th International Conference on Emerging Trends in Engineering and Technology, 2011, pp. 284-289.
    [32] 王志華, “高功率CMOS微波開關設計, ” 碩士論文, 國立中央大學, 2011.

    QR CODE
    :::