跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹立宇
Li-Yu Chan
論文名稱: 可改善幾何演算法之精準度的電壓趨動運算放大器自動化設計方法
A Bias-Driven Approach to Improve the Accuracy of GP-Based CMOS OP-Amp Design Automation
指導教授: 劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 線性規劃自動化設計兩級式運算放大器
外文關鍵詞: design automation, two stage OPA, linear programming, lingo
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了縮短類比積體電路的設計時間,類比積體電路的自動化設計,也慢慢的受到重視,典型的類比電路自動化設計方法大致可分為三大類:知識基礎(knowledge-based)、模擬基礎(simulation-based)以及方程式基礎(equation-based)方法,但是每一種方法都有各自的優缺點,本論文提出一套新的方程式基礎的運算放大器自動化設計流程,並且以兩級式運算放大器說明gm/ID的設計方法,本論文提出的設計流程可以改善傳統幾何演算法的缺點,因此能有效減少設計中來回修改的次數。整個流程已經以C++實現,而非線性規劃(nonlinear programming)的部分用LINGO來解,並整合成一個完整的程式。從實驗數據的觀察並跟模擬退火演算法及幾何演算法的設計流程做比較,本論文所提出的方法可以在最短的時間內達到使用者所設計的規格。


    In order to shorten the design cycles of analog circuits, analog design automation has become a popular research topic in recent years. Typically, analog design automation approaches can be classified into three categories: knowledge-based, simulation-based and equation-based approaches. But each approach has its own disadvantages in terms of accuracy and efficiency. In this thesis, we propose a new equation-based analog synthesis process and demonstrate on a two-stage operational amplifier(op-amps). Based on gm/ID design concept, this process can improve the accuracy of traditional GP-based approach thus reducing the design iterations. The proposed automation process has been implemented with C++ and LINGO, which is a nonlinear programming solver. As demonstrated in the experiments, the proposed approach can achieve the required specifications with the shortest computation time compared to previous SA-based and GP-based approaches.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章、 緒論 1 1-1 研究動機 1 1-2 相關研究 4 1-3 論文結構 12 第二章、 背景 13 2-1 兩級式運算放大器整體電路架構 13 2-2 兩級式運算放大器 14 2-2-1 補償電路 15 2-2-2 偏壓電路 16 2-2-3 電晶體操作偏壓限制 17 2-3 gm/ID方法 20 2-3-1 gm/ID的特性 20 2-3-2 線性迴歸(regression) 23 2-4 非線性規劃 25 第三章、 自動化設計 27 3-1 限制條件與目標函式 28 3-2 自動化設計流程圖 30 3-3 自動化設計步驟 32 3-3-1 設計兩級式運算放大器 32 3-3-2 設計補償電路 37 3-3-3 設計偏壓電路 38 第四章、 實驗結果與分析 40 4-1 實驗環境 40 4-2 實驗結果 40 4-2-1 最佳化功率消耗實驗結果 41 4-2-2 最佳化功率消耗及使用面積實驗結果 42 第五章、 結論 44 第六章、 參考文獻 45

    [1] W. T. Nye, E. Polak and A. Sangiovanni-Vincentelli, “DELIGHT: An optimization-based computer-aided design system,” IEEE International Symposium on Circuits and Systems, 1981, pp. 851-855.
    [2] M. Hershenson, S. P. Boyd and T. H. Lee, “Automated design of folded-cascode op-amps with sensitivity analysis,” IEEE International Conference on Electronics, Circuits and Systems, vol.1, 1998, pp.121-124.
    [3] L. Dai and R. Harjani, “CMOS switched-op-amp-based sample-and-hold circuit,” IEEE J. Solid-State Circuit, vol.35, no.1, 2000, pp. 109-113.
    [4] G. Espinosa-Flores-Verdad and R. Salinas-Cruz. “Symmetrically compensated fully differential folded-cascode OTA,” Electronic Letters. vol. 35, no. 19, 1999, pp. 1603-1604.
    [5] M. Kayal, ”Transistor-Level Analog IC Design,” Short Course Lecture Note, EPFL, Lausanne, Switzerland, 2004.
    [6] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “Automatic DeviceSizing in Analog Circuit Design,” National Conf. Radio Science(RVK), 2002, pp. 187-191.
    [7] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “Optimization-Based Device Sizing in Analog Circuit Design,” Swedish System-on-Chip Conference, Falkenberg, Sweden, 2002.
    [8] E. Hjalmarson, R. Hägglund, and L. Wanhammar, “An Optimization-Based Approach for Analog Circuit Design,” European Conference on Circuit Theory Design, 2003, pp. 369-372.
    [9] E. Hjalmarson, R. Hägglund, and L. Wanhammar, “A Design Platform for Computer-Aided Design of Analog Amplifiers,” Swedish System-on-Chip Conf., Eskilstuna, Sweden, 2003.
    [10] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “A Design Path for Optimization-Based Analog Circuit Design,” IEEE Midwest Symp. Circuits Syst. , 2002, pp. 287-290.
    [11] F. El-Turky and E.E. Perry, BLADES: an arrificial intelligence approach to analog circuit design",IEEE Trans. on CAD, Vol. 8, No. 6,1989, pp. 680-692.
    [12] J. Mahattanakul, J. Chutichatuporn, “Design Procedure for Two-Stage CMOS Opamp With Flexible Noise-Power Balancing Scheme,” IEEE Trans Circuits and Systems, vol. 52, no 8, 2005, pp. 1508–1514.
    [13] C.-W. Lin, P.-D. Sue, Y.-T. Shyu, S.-J Chang, “A Bias-Driven Approach for Automated Design of Operational Amplifiers,” IEEE VLSI Design Automation and Test, 2009, pp. 118-121.
    [14] Y.-T. Shyu, C.-W. Lin, Jin-Fu Lin and Soon-Jyh Chang, “A gm/ID-based synthesis tool for pipelined analog to digital converters,” IEEE VLSI Design Automation and Test, 2009, pp 299-30.
    [15] P. Mandal, V. Visvanathan, “CMOS Op-Amp Sizing Using a Geometric Programming Formulation,” IEEE Transactions on Computer-Aided Design, vol. 20, no. 1, 2001, pp. 22-38.
    [16] M.delM. Hershenson, S.P. Boyd, T.H. Lee, “Optimal design of a CMOS op-amp via geometric programming,” IEEE/ACM International Conference on Computer-Aided Design, vol. 20, no. 1, 2001, pp. 1-21.
    [17] M. S. Bazarar, H. D. Sherali, and C. M. Shetty, “Nonlinear Programming,” Wiley, 1993, 2nd ed.
    [18] F. Silveira, D. Flandre, P.G.A. Jespers, ” A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA,” IEEE J. Solid-State, vol. 31, no. 9, 1996, pp. 1314-1319.
    [19] B. Razavi, “Design of analog CMOS integrated circuits”, McGraw-Hill Higher Education, 2001
    [20] W. Gao, R. Hornsey, “A power optimization method for CMOS op-amps using sub-space based geometric programming,” IEEE Design Automation and Test in Europe, 2010, pp. 508-513.
    [21] http://www.lindo.com/index.php?option=com_content&view=article&id=28&Itemid=4
    [22] M. Loulou, S. Ait Ali, M. Fakhfakh, N. Masmoudi, “An optimized methodology to design CMOS operational amplifier,” IEEE International Conference on Microelectronics, 2002, pp. 14-17.

    QR CODE
    :::