跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉信杏
Shin-Shing Yeh
論文名稱: 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論
Columnar structure of aligned dipoles in two dimension and mean-field theory for inhomogeneous electrolytes
指導教授: 陳培亮
Peilong Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 71
中文關鍵詞: 單向偶極子非均勻電解質
外文關鍵詞: uniaxial dipoles, inhomogeneous electrolytes
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部份我們利用平均場的近似方法來計算非均勻電解質的自由能,與之前的理論相比,我們得到對自由能有重要貢獻的另外兩項:其一,當電解質密度有緩慢變化時會比均勻的時候額外貢獻一微分項。其二,當離子被侷限於交界面的一邊時,會貢獻另一邊界效應項。
    這兩項會使得空氣跟鹽水交界面附近的離子被排開量變多而所得表面張力也比之前的理論所得到的要大。我們也用這理論來計算純水-鹽水交界面和鹽水-鹽水交界面附近的電解質分佈。另外,也計算了兩個不帶電的大球在電解質中的相互作用力。
    第二部分我們分別從理論跟實驗上以二維系統來研究單一方向的偶極子所形成的柱狀結構。考慮偶極子之間的作用,在理論計算得到柱狀結構的寬度與長度成正比,而比值在偶極子所佔體積比很小時趨近0.17,且隨著體積比增加而增加。實驗上,我們在磁性流體薄層外加
    一平行磁場,觀察得到週期性的柱狀結構。發現這些柱狀結構的寬度跟間距與所用的薄層厚度無關。其間距幾乎與其長度相等且其寬度如同理論所預測與長度成正比,不過所得到的比值比二維理論所得為高。


    In the first part, we calculate the free energy density for inhomogeneous electrolytes based on the mean field Debye-H¨uckel theory. Derived are the contributions of (1) the differential term for the electrolyte density being slow-varying in one direction and (2) the boundary term for an electrolyte confined to one side of a planar interface. These contributions are shown to
    cause the electrolyte depletion near the air-water interfaces, which makes the surface tension to increase, to be significantly larger than those predicted by previous theories. Non-uniform electrolyte densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we remark
    on the interaction of two uncharged macro-spheres due to the electrolyte depletion.
    In the second part, we study the columnar structure of the uniaxial dipoles in two dimension both theoretically and experimentally. The columnar width is theoretically computed to be proportional to its length by the consideration of the dipole-dipole interaction. The ratio is obtained to be 0.17 in the
    case of low volume fraction and becomes larger at a larger volume fraction. In experimental study, we apply an external magnetic field parallel to the magnetic fluid film to study the structure in equilibrium. The columnar width and spacing are shown to be independent of the height. The spacing is observed to almost equal to the columnar length. The columnar width is
    proportional to its length but with a larger ratio than the theoretical results.

    Part I. Mean-field theory for inhomogeneous electrolytes 1 1 Introduction 2 2 Mean field theory for the homogeneous electrolytes 5 2.1 Debye-H¨uckel Theory . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Linear PB equation . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Electrostatic free energy . . . . . . . . . . . . . . . . . 7 2.2 Applications of the DH theory to the inhomogeneous cases . . 8 2.2.1 Density profile near an air-water interface . . . . . . . 8 2.2.2 Surface tension . . . . . . . . . . . . . . . . . . . . . . 9 3 Mean filed theory for inhomogeneous electrolytes 11 3.1 Free energy for inhomogeneous cases . . . . . . . . . . . . . . 11 4 Numerical results and discussions 16 4.1 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Density profile near a air-water interface . . . . . . . . . . . . 17 4.3 Depletion near a water-water interface . . . . . . . . . . . . . 20 4.4 Two neighboring electrolyte solutions . . . . . . . . . . . . . . 22 4.5 Attraction between two neutral macro-spheres in electrolytes . 25 5 Conclusion 28 References 29 Part II. Columnar structure of aligned dipoles in two dimension 32 6 Introduction 34 7 Calculation of columnar structure in two dimension 37 7.1 Dipole-dipole and chain-chain interactions . . . . . . . . . . . 37 7.2 Preferred columnar size . . . . . . . . . . . . . . . . . . . . . . 38 8 Monte Carlo Simulation 45 8.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.2 Parameters and results . . . . . . . . . . . . . . . . . . . . . . 46 9 Apparatus and experiment 50 9.1 Material and setup . . . . . . . . . . . . . . . . . . . . . . . . 50 9.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10 Results and Discussion 56 10.1 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10.2 The effects of the cell thickness . . . . . . . . . . . . . . . . . 59 10.3 The columnar size and spacing . . . . . . . . . . . . . . . . . . 61 11 Conclusion 68 References 70

    Part I.
    [1] P. W. Debye and E. H¨uckel, Phys. Z. 24, 185 (1923).
    [2] D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York,
    1976).
    [3] C. Wagner, Phys. Z. 25, 474 (1924).
    [4] N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat.-fys Medd. 7, 1 (1926).
    [5] L. Belloni, Phys. Rev. Lett. 57, 2026 (1986); J.-P. Hansen and I. Mc-
    Donald, Theory of Simple Liquids (Academic, London, 1990); R. D.
    Groot, J. Chem. Phys. 94, 5083 (1991); M. Lozada-Cassou and J. E. S.
    Sanchez, Chem. Phys. Lett. 190, 202 (1992).
    [6] See, e.g., J. P. Valleau, J. Chem. Phys. 95, 584 (1991); P. Linse and V.
    Lobaskin, Phys. Rev. Lett. 83, 4208 (1999); J. Reˇsˇciˇc and P. Linse, J.
    Chem. Phys. 114, 10131 (2001).
    [7] S. Nordholm, Chem. Phys. Lett. 105, 302 (1984).
    [8] M. N. Tamashiro, Y. Levin and M. C. Barbosa, Physica A. 268, 24
    (1999).
    [9] L. Mier-y-Teran, S. H. Suh, H. S. White and H.T. Davis, J. Chem. Phys.
    92, 5087 (1990); Z. Tang, L. E. Scriven and H. T. Davis, ibid. 97, 494(1992); T. Biben, J.-P. Hansen and Y. Rosenfeld, Phys. Rev. E. 57, 3727
    (1998); D. Boda, D. Henderson, R. Rowley and S. Sokolowski, J. Chem.
    Phys. 111, 9382 (1999).
    [10] J.-L. Barrat and J.-P. Hansen, Basic concepts for simple and complex
    liquids (Cambridge University Press, London, 2003).
    [11] M. C. Barbosa, M. Deserno and C. Holm, Europhys. Lett. 52, 80 (2000);
    M. C. Barbosa, M. Deserno C. Holm and R. Messina, Phys. Rev. E. 69,
    051401 (2004).
    [12] L. Onsager and N. N. T. Samaras, J. Chem. Phys. 2, 528 (1934).
    [13] A. Heydweiller, Phys. Z. 3, 329 (1902).
    [14] D. Myers, Surface, Interfaces, and Colloids: Principles and Applications
    (VCH Publishers, New York, 1991).
    [15] Y. Levin, J. Chem. Phys. 113, 9722 (2000); Y. Levin and J. E. Flores-
    Mena, Europhys. Lett. 56, 187 (2001).
    [16] N. Matubayasi, H. Matsuo, K. Yamamoto, S. Yamaguchi and A.
    Matuzawa, J. Colloid Interface Sci. 209, 398 (1998).
    [17] B. W. Ninham and V. Yaminsky, Langmuir 13, 2097 (1997); M.
    Bostr¨om, D. R . M. Williams and B. W. Ninham, ibid. 17, 4475 (2001).
    [18] C.-H. Ho, H.-K Tsao and Y.-J. Sheng, J. Chem. Phys. 119, 2369 (2003).
    [19] H. G and H. Weing¨artner, J. Phys. Chem. 93, 3378 (1989).
    [20] R. R. Singh and K. S. Pitzer, J. Chem. Phys. 92, 6775 (1990); T.
    Narayanan and K. S. Pitzer, Phys. Rev. Lett. 73, 3002 (1994); M. A.Anisimov, A. A. Povodyrev, V. D. Kulikov and J. V. Sengers, ibid. 75,
    3146 (1995).
    [21] M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993); Y. Levin
    and M. E. Fisher, Physica A. 225, 164 (1996).
    [22] E. J. W. Verwey and K. F. Niessen. Philos. Mag. 28, 435 (1939); H. H.
    Girault and D. J. Schiffrin, J. Electroanal. Chem. 150, 43 (1983).
    [23] T. Wandlowski, V. Marecek, K. Holub and Z. Samec, J. Phys. Chem.
    93, 8204 (1989); T. Kakiuchi, J. Noguchi, M. Kotani and M. Senda, J.
    Electroanal. Chem. 296, 517 (1990); T. Kakiuchi, J. Noguchi and M.
    Senda, ibid. 336, 137 (1992).
    [24] B. V. Derjaguin and L. D. Landau, Acta Physicochim. USSR. 14, 633
    (1941); E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability
    of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
    [25] A. E. Larsen and D. G. Grier, Nature 385, 230 (1997).
    [26] G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994); J. C.
    Crocker and D. G. Grier, ibid. 77, 1897 (1996); D. G. Grier, Nature
    393, 621 (1998).
    [27] O. Spalla and L. Belloni, Phys. Rev. Lett. 74, 2515 (1995); B.-Y. Ha
    and A. J. Liu, ibid. 79, 1289 (1997).
    [28] N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma and W. M. Gelbart,
    Phys. Rev. Lett. 78, 2477 (1997).
    [29] T. M. Squires and M. P. Brenner, Phys. Rev. Lett. 85, 4976 (2000)
    [30] E. Allahyarov, I. D’Amico and H. L¨owen, Phys. Rev. Lett. 81, 1334
    (1998).
    Part II.
    [1] T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).
    [2] T. J. Chen, R. N. Zitter and R. Tao, Phys. Rev. Lett. 68, 2555 (1992).
    [3] R. Tao and J. M. Sun, Phys. Rev. Lett. 67, 398 (1991).
    [4] E. Lemaire, Y. Grasselli and G. Bossis, J. Phys. II (France) 2, 359
    (1992); Y. Grasselli, G. Bossis and E. Lemaire, J. Phys. II (France) 4,
    253 (1994).
    [5] J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J.
    Bibette and J. Richards, Phys. Rev. Lett. 74, 2828 (1995).
    [6] H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers and R. E. Rosensweig,
    Phys. Rev. Lett. 72, 1929 (1994).
    [7] L. Zhou, W. Wen and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
    [8] M. Fermigier and A. P.Gast, J. Colloid Interface Sci. 154, 522 (1992).
    [9] D. Wirtz and M. Fermigier, Phys. Rev. Lett. 72, 2294 (1994).
    [10] S. Y. Yang, Y.H. Chao and H. E. Horng, J. Appl. Phys. 97, 093907
    (2005).
    [11] A. Satoh, R. W. Chantrell, S. -I. Kamiyama and G. N. Coverdale, J.
    Colloid Interface Sci. 178, 620 (1996).
    [12] M. Gross and S. KisKamp, Phys. Rev. Lett. 79, 2566 (1997).
    [13] C. J. Chin, Yiacoumi and C. Tsouris, Langmuir, 17, 6065 (2001).

    QR CODE
    :::