跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林青瑩
Ching-Ying Lin
論文名稱: 環狀地盤改良後基樁之側向變形特性
指導教授: 張惠文
Huei-Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 軟弱黏性土壤側向位移環狀地盤改良有限元素分析
外文關鍵詞: soft cohesive soil, finite element analysis, annular ground improvement, lateral displacement of pile
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   樁基礎為軟弱地盤中常採用之基礎型式,其主要功能為將上部荷載以點承或摩擦的方式傳遞至底部或周圍土層。然而,上部結構除了垂直荷載外也會有水平荷載。為了符合基樁的使用性,必須將容許側向位移限制在某一限度,本研究旨在探討環狀地盤改良法對基樁側向位移的改良成效,並兼顧經濟性及實用性,歸納出最佳改良範圍。
      本研究以不同水泥配比之攪拌處理方式,對樁周土壤進行環狀改良,以增加土壤強度,探討對基樁水平側向位移之改良成效。其中改良區域配合網格為輻射狀,假設成圓柱體。改良區域以三個參數作為控制變數,改良壁體中心與樁中心點之距離、改良壁體深度及改良壁體厚度,皆以樁徑作為基本單位,運用有限元素軟體ABAQUS,進行108種不同改良範圍及4種改良配比,共432組之分析。
      在基樁承受最大荷重(Q=1000kN)時,由數值分析結果得知,改良配比為16%,改良寬度為1m,改良深度為5倍樁徑,改良距離為4倍樁徑之改良範圍,對樁頭側向位移之改良成效達13.89%,顯示對樁周土壤進行環狀改良,可增加淺層土壤的剪力強度,提供水平阻抗,進而有效減少樁身之側向位移。


    Pile foundation is often adopted in soft ground, it can transfer the weigh of structure by the way of skin friction and end bearing resistance to the bottom or the soil around. However, the structure will load in either vertical or horizontal direction. To conform to the practicality, the lateral displacement of pile must be restrained in a certain limit. This study focused on the treated effects in lateral displacement by annular ground improvement, and figured out the best range of treatment by considering its economy and practicability with FEM analysis.
    In this study, different cement contents were used to treat soil ring around pile to increase the lateral resistance of ground. The FEM mesh of treated zone is annular. The range is governed by treated distance, treated depth and treated thickness. To perform the numerical analysis, FEM based software named ABAQUS was used in this research. This research carried out a series of numerical analysis including 108 kinds of treated range and 4 kinds of cement content.
    The numerical analysis results of pile in cohesive soil indicated that with the cement content of 16% and the treated range with the dimension of 1m in thickness, 5R in depth, and 4R in distance (where R is the diameter of pile), it can achieve an economical improvement effects in reducing the lateral displacement of pile. The local soil improvement can increase the lateral resistance of ground and reduce the lateral displacement of pile under laterally loading condition.

    目 錄 內 容 頁次 中文摘要 Ⅰ 英文摘要 Ⅱ 目 錄 Ⅲ 圖 目 錄 VI 表 目 錄 X 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法 2 1.4 研究內容 2 第二章 文獻回顧 4 2.1基樁承受側向荷載之變形行為 4 2.2基樁剛柔度判別 5 2.3靜力分析法 5 2.3.1彈性分析法 5 2.3.2土壤反力法 7 2.3.3有限元素法 10 2.4地盤改良工法 12 2.4.1軟弱地盤定義 12 2.4.2攪拌工法 13 2.4.3格狀地盤改良工法 14 2.4.4水泥穩定處理 14 2.4.5改良土特性 16 第三章 分析方法 28 3.1分析程式 28 3.2分析模型 30 3.2.1網格建立 31 3.2.2分析模型之元素類型 31 3.2.3材料組成模式 31 3.2.4介面處理 32 3.2.5初始應力 33 3.3參數說明 34 3.3.1基樁參數 34 3.3.2台北盆地沖積黏性土參數 34 3.3.3改良範圍之材料參數 34 3.4數值模擬架構 35 第四章 分析結果 47 4.1元素邊界研究 47 4.2基樁側向極限荷載 47 4.3未改良土之樁土位移分析 48 4.3.1樁頭位移與地表位移 48 4.3.2樁身位移 49 4.4環狀改良後之樁土位移分析 49 4.4.1改良寬度與樁頭位移 50 4.4.2改良深度與樁頭位移 50 4.4.3改良距離與樁頭位移 51 4.4.4改良距離與改良深度之綜合討論 53 4.4.5改良配比與樁頭位移 53 4.4.6土壤反力 54 4.4.7樁身彎矩 55 第五章 結論與建議 78 5.1結論 78 5.2建議 79 參考文獻 80

    參考文獻
    1.王訓濤、周南山,「承受側向力之基樁與土壤之互制作用」,地工技術,第24期,第39-48頁(1988)。
    2.中國土木水利工程學會,「混凝土工程設計規範與解說」,科技圖書股份有限公司,第1-1 – 1-5頁(1998)。
    3.日本道路協會,「樁基礎設計便覽」,第115-125頁(1986)。
    4.朱惠君,「側向荷重樁之非線性反應分析」,博士論文,國立台灣大學土木工程研究所,台北(2000)。
    5.吳筱寒,「黏土中基樁側向位移改良之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
    6.范嘉程,「承受橫向力之群樁分析」,地工技術,第66期,第85-96頁(1998)。
    7.陳修,「水泥系材料改良飽和黏性土力學性質之研究」,碩士論文,國立中央大學土木工程研究所,中壢(1985)。
    8.陳榮利,「軟弱地盤經攪拌處理後之力學性質」,碩士論文,國立中央大學土木工程研究所,第4-13頁,中壢(1994)。
    9.陳逸駿、張吉佐,「基樁側向行為(一)」,現代營建,第19卷,第11期,第11-18 頁(1998)。
    10.張有齡、周南山,「張氏簡易側樁分析法(上篇:靜力部分)」,地工技術,第25期,第64-82頁(1989)。
    11.鈴木吉夫、齊藤聰、木村玄、木林長仁、細見尚史,”格子狀地盤改良による液狀化對策を施した建築基礎の調查報告”,基礎工,v. 10,pp. 54-58(1995)。
    12.黃詩豪,「深層扮合改良地盤之三維數值分析」,碩士論文,國立成功大學土木工程研究所,台南(2003)。
    13.曾國熙等人,樁基工程手冊,中國建築工業出版社,第229-230頁(1995)。
    14.歐晉德,「基樁受填土影響之側向力問題」,地工技術,第18期,第8-13頁(1987)。
    15.鄭清江,「建築物液化因應對策及工法」,土木工程技術,第四卷,第二期,第55-74頁 (2000)。
    16.薛朝光,「場鑄樁卅群樁側向荷載非線性行為之研究」,博士論文,國立臺灣海洋大學河海工程研究所,基隆(2004)。
    17.ABAQUS Analysis User’s Manual,Version 6.4.
    18.Alamgir, M., Miura, N., Poorooshasb, H. B., and Madhav, M. R., “Deformation Analysis of Soft Ground Reinforced by Columnar Inclusions,” Computers and Geotechnics, Vol. 18, No.4, pp.267-290 (1996).
    19.Baguelin, F., Frank, R., and Said, Y. H., “Theoretical study of lateral reaction mechanism of piles,” Geotechnique, Vol. 27, No. 3, pp.405- 434 (1977).
    20.Banerjee, P. K., and Davies, T. G.,“The behaviour of axially and laterally loaded single piles embedded in non-homogeneous soils,” Geotechnique, Vol. 28, No. 3, pp.309-326(1978).
    21.Bierschwale, M. C. and Bartoskewitz, R. E.,“Lateral Load Test on Drilled Shafts,” Drilled Piers and Caissons, Ed. MW O’Neill, ASCE, New York, pp.98-113(1981).
    22.Broms, B.B., “Lateral resistance of piles in cohesive soils,” Journal of the Soil Machanics and Foundations Division, ASCE, Vol. 90, No. SM2, pp.27-212(1964).
    23.Brown, D. A., and Shie, C. F., “Three dimensional finite element model of laterally loaded piles,” Computers and Geotechnics, Vol. 10, No. 1, pp. 59-79(1990).
    24.Chen, L., and Poulos, H. G., “Analysis of pile-soil interaction under lateral loading using infinite and finite element,” Computers and Geotechnics, Vol. 15, No. 4, pp.189-220(1993).
    25.Das, B. M., Priniciples of Foundation Engineering, PWS-KENT Publishing Company, Boston, pp.665-672(1990).
    26.Douglas, D. J., and Davis, E. H., “The movement of buried footings due tomoment and horizontal load and the movement of anchor plates,” Geotechnique, Vol. 14, pp.115-132(1964).
    27.Lee, F. H., Lee, Y., Chew, S. H.,and Yong, K. Y.,“Strength and Modulus of Marine Clay-Cement Mixes,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, Issue 2,pp.178-186 (2005).
    28.Moh, Z. C., “Soil stabilization with cement and sodium additives,” Journal of the Soil Mechanics and Foundation Division, ASCE, No. SM6, pp.81~105(1962).
    29.Maheshwari, B. K., Truman, K. Z., Naggar, E. I., and Gould, P. L.,“Three-dimensional Nonlinear Analysis for Seismic Soil-pile- structure Interaction,” Soil Dynamics and Earthquake Engineering, Vol.24, pp.343-356(2004).
    30.Mitchell, J. K., and Jack, S. A.,“The Fabric of Soil-Cement and its Formation,” Proc. of 14th National Cont. Clay and Clay Minerals, Vol. 26, pp.297-305(1966).
    31.Poulos, H. G., “Behaviour of Loaded Files:I-single Pile,”Proc. ASCE, Jourmal of soil mechanics and Foundation Division, Vol. 97, SM5, pp. 711-731 (1971).
    32.Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design, John Wiley and Sons, New York(1980).
    33.Poulos, H. G., and Hull, T. S., “The Role of Analytical Mechanics in Foundation Engineering, ” Foundation Engineering, Current Principals and Practices, ASCE, Vol. 2, pp.1578-1606(1989).
    34.Sheng, D., Eigenbrod, K. D., and Wriggers, P.,“Finite Element Analysis of Pile Installation using Large-slip Frictional Contact,” Computers and Geotechnics, Vol. 32, No.1, pp.17-26(2005).
    35.Trochanis, A. M., Bielak, J., and Christiano, P., “Three-dimensional nonlinear study of piles,” Journal of the Geotechnical Engineering, ASCE, Vol. 117, No. 3, pp. 429-447(1991).
    36.Trochanis, A. M., Bielak, J., and Christiano, P., “Simplified model for analysis of one or two piles,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 3, pp. 448-466 (1991).
    37.Yonekura, R., Terashi, M., and Shibazaki, M., Grouting and Deep Mixing, A.A. Balkema, Netherland(1996).
    38.Zhang, L. M., Ng, C. W. W., and Lee, C. J.,“Effect of Slope and Sleeving on Behavior of Laterally Loaded Piles,” Soils and Foundations, Vol.44, No.4, pp.99-108(2004).

    QR CODE
    :::