跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯廷翰
Ting-Han Ke
論文名稱: 考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統
Intelligent PV System with LVRT under Grid Faults for Distribution System
指導教授: 林法正
Faa-Jeng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 配電系統三相故障低電壓穿越太陽光電系統虛功控制機 率小波模糊類神經網路非歸屬函數之TSK型機率模糊類神經網路
外文關鍵詞: Photovoltaic system, PWFNN, TSKPFNN-AMF, low voltage ride through, grid faults, reactive power control
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種併網型太陽光電系統於故障期間之實虛功智慧型控制法,此二智慧型控制法皆同時符合再生能源併網低電壓穿越規範與變流器之最大電流限制。所提之二智慧型控制器分別為機率小波模糊類神經網路控制器,以及非對稱歸屬函數之TSK型機率模糊類神經網路控制器。論文中將詳細介紹兩種智慧型控制器的架構與線上學習法則,並證明其收斂性分析。當併網型太陽光電系統發生電壓故障時,控制器會依據低壓穿越規範所規範的虛功補償參考值,調整注入市電系統之虛功量,並能使太陽光電系統所產生的實功與注入市電的實功維持平衡。此外,本研究還提出兩種雙模式控制策略可於故障期間消除直流鏈電壓的波動。還有,在故障期間,注入市電系統電流大小加入了最大電流限制以降低過電流發生的風險。最後展示一些實驗結果以驗證所提方法之成效。


    Two active and reactive power control schemes using intelligent control for grid-connected three-phase photovoltaic (PV) system during grid faults are proposed in this study. The control schemes are based on a ratio between active and reactive power which meet the low voltage ride through (LVRT) regulations and inverter maximum current limit simultaneously. Moreover, two intelligent controls based on probabilistic wavelet fuzzy neural network (PWFNN) and Takagi-Sugeno-Kang type probabilistic fuzzy neural network with asymmetric membership function (TSKPFNN-AMF) are developed to control the reactive power injected into the grid and balance the active power between the power generated by the PV and the power delivered into the grid under grid faults. The intelligent controllers regulate the value of reactive power to a new reference value which complies with the requirements of LVRT under grid faults. Furthermore, two dual-mode operation control strategies, which can eliminate the fluctuation of DC-link bus voltage under grid faults, are also discussed. In addition, to reduce the risk of over-current during the LVRT operation, a current limit is predefined in current injection. Finally, some experimental results are presented in order to validate the effectiveness of the proposed control.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第 1 章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 論文大綱 6 1.4 本文貢獻 6 第 2 章 太陽光電系統簡介 7 2.1 簡介 7 2.2 太陽能電池特性簡介 7 2.3 太陽能電池最大功率點追蹤 11 2.4 三相座標軸轉換之分析 12 2.4.1 靜止座標軸 14 2.4.2 同步旋轉座標軸 15 2.4.3 三相功率計算 16 2.5 市電角度偵測策略 17 2.5.1 三相線電壓軸轉換法 17 2.5.2 三相電壓濾波法 18 2.5.3 三相鎖相迴路法 19 2.6 變流器之實虛功控制與電流控制 20 2.7 硬體設備 22 2.7.1 可程控直流電源供應器(具太陽能電池陣列模擬功能) 23 2.7.2 升壓轉換器、變流器 25 2.7.3 三相變壓器 27 2.7.4 交流電源供應器 28 2.7.5 資料擷取卡 30 第 3 章 配電系統三相故障分析 32 3.1 簡介 32 3.2 故障型態分析 32 3.3 正負序分析 37 3.4 正負序偵測 40 3.5 故障電壓偵測與低電壓穿越規範 48 第 4 章 機率小波模糊類神經網路之太陽光電系統 51 4.1 系統簡介 51 4.2 升壓轉換器雙模式控制策略 52 4.3 機率小波模糊類神經網路架構 55 4.4 機率小波模糊類神經網路線上學習法則 58 4.5 機率小波模糊類神經網路之收斂性分析 60 4.6 實作與討論 62 4.6.1 配電系統單相對地故障(Mode I) 62 4.6.2 配電系統單相對地故障(Mode II) 65 4.6.3 配電系統兩相之間故障(Mode II) 68 第 5 章 非對稱歸屬函數之TSK型機率模糊類神經網路之太陽光電系統 71 5.1 簡介 71 5.2 雙模式控制策略 72 5.3 非對稱歸屬函數之TSK型機率模糊類神經網路架構 74 5.4 非對稱歸屬函數之TSK型機率模糊類神經網路線上學習法則 77 5.5 非對稱歸屬函數之TSK型機率模糊類神經網路之收斂性分析 80 5.6 實作與討論 82 5.6.1 配電系統兩相對地故障(Mode I) 83 5.6.2 配電系統兩相對地故障(Mode II) 86 5.6.3 配電系統兩相對地故障(Mode II) 89 第 6 章 結論與未來研究方向 92 6.1 結論 92 6.2 未來研究方向 92 參考文獻 93 作者簡歷 98

    [1] Global Market Outlook for Photovoltaics 2013-2017, 2013, [Online]. Available: http://www.epia.org/home/
    [2] 經濟部能源局,2012年能源產業技術白皮書,經濟部能源局,台北市,2012。
    [3] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Indust. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
    [4] M. H. J. Bollen, “Characterisation of voltage sags experienced by three-phase adjustable-speed drives,” IEEE Trans. Power Del., vol. 12, no. 4, pp. 1666-1671, Oct. 1997.
    [5] V. Ignatova, P. Granjon, and S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2054-2061, Oct. 2009.
    [6] Grid Code High and Extra High Voltage, E.ON Netz GmbH, Bayreuth, Germany, Apr. 2006. [Online]. Available: http://www.nationalgrid.com/uk
    [7] P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Flexible active power control of distributed power generation systems during grid faults,” IEEE Trans. Indus. Electron., vol. 54, no. 5, pp. 2583-2592, Oct. 2007.
    [8] P. Rodríguez, A. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Reactive power control for improving wind turbine system behavior under grid faults,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1798-1801, Jul. 2009.
    [9] M. Castilla, J. Miret, J. L. Sosa, J. Matas, and L. García de Vicuña, “Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 2930-2940, Dec. 2010.
    [10] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu, and J. M. Carrasco, “Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3934-3943, Sep. 2012.
    [11] C. T. Lee, C. W. Hsu, and P. T. Cheng, “A low-voltage ride-through technique for grid-connected converters of distributed energy resources,” IEEE Trans. Indus. Appl., vol. 47, no. 4, pp. 1821-1832, Jul./Aug. 2011.
    [12] J. Miret, M. Castilla, A. Camacho, L. García de Vicuña, and J. Matas, “Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4262-4271, Oct. 2012.
    [13] A. Camacho, M. Castilla, J. Miret, J. C. Vasquez, and E. Alarcón-Gallo, “Flexible voltage support control for three-phase distributed generation inverters under grid fault,” IEEE Trans. Power Electron., vol. 60, no. 4, pp. 1429-1441, Apr. 2013.
    [14] J. Miret, A. Camacho, M. Castilla, L. García de Vicuña, and J. Matas, “Control scheme with voltage support capability for distributed generation inverters under voltage sags,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5252-5262, Nov. 2013.
    [15] D. Xie, Z. Xu, L. Yang, J. Østergaard, Y. Xue, and K. P. Wong, “A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support,” IEEE Trans. Power Sys., to be published, 2013.
    [16] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN,” IET Electr. Power Appl., vol. 153, no. 4, pp. 608-618, Jul. 2006.
    [17] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
    [18] W. M. Lin and C. M. Hong, “A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 473-481, Feb. 2011.
    [19] I. B. Kucukdemiral and G. Cansever, “Formalization of a noval Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proc. IEEE International Conference Mechatronics, pp. 717-720, 2005
    [20] Z. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Trans. Power Del., vol. 19, no. 4, pp. 1560-1568, Oct. 2004.
    [21] N. M. Pindoriya, S. N. Singh, and S. K. Singh, “An adaptive wavelet neural network-based energy price forecasting in electricity markets,” IEEE Trans. Power Sys., vol. 23, no. 3, pp. 1423-1432, Aug. 2008.
    [22] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Indus. Electron., vol. 58, no. 7, pp. 3046-3058, Jul. 2011.
    [23] M. Davanipoor, M. Zekri, and F. Sheikholeslam, “Fuzzy wavelet neural network with an accelerated hybrid learning algorithm," IEEE Trans. Fuzzy Sys., vol. 20, no. 3, pp. 463-470, Jun. 2012.
    [24] Z. Liu and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Sys., vol. 13, no. 6, pp. 848-859, Dec. 2005.
    [25] H. X. Li and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Sys., vol. 16, no. 4, pp. 898-908, Aug. 2008.
    [26] N. Sozhamadevi, R. S. L. Delcause, and Dr. S. Sathiyamoorthy, “Design and implementation of probabilistic fuzzy logic control system,” in Proc. IEEE Conf. Emerging Trends in Science, Engineering and Technology, pp. 523-531, 2012.
    [27] H. Y. Pan, C. H. Lee, F. K. Chang, and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proc. Int. Conf. Machine Learning and Cybernetics, pp. 2024-2030, 2007.
    [28] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Indust. Electron., vol. 54, no. 3, pp. 1528-1536, 2007
    [29] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
    [30] K. Ishaque, Z Salam, M Amjad, and S Mekhulef, “An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
    [31] Y. H. Yang and F. Blaabjerg, “A modified P&O MPPT algorithm for single phase PV systems based on deadbeat control,” in Proc. 6th IET Inter. Conf. Power Electronics, Machines and Drives, Mar. 2012.
    [32] 黃仲欽,交流電動機控制,交流電動機課程講義,民國97年。
    [33] N. Mohan, T. M. Undeland, W. P. Robbins, Power electronics, 1989.
    [34] 使用手冊,可程控直流電源供應器(具太陽能電池陣列模擬) 62000H系列使用手冊,Chroma,2012。
    [35] 使用手冊,太陽能電池陣列模擬虛擬儀控面板 62000H系列使用手冊,Chroma,2012年三月。
    [36] 呂宗翰,智慧型控制雙饋式感應風力發電系統之研製,國立中央大學,碩士論文,2010年六月。
    [37] H. Saadat, Power System Analysis, McGraw-Hill, 2004.
    [38] User Manual, User’s Manual PCR-LE series, KIKUSUI, Feb. 2013.
    [39] G. Saccomando, J. Svensson, and A. Sannino, “Improving voltage disturbance rejection for variable-speed wind turbines,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 422-428, Sep. 2002.
    [40] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic and wind power systems. John Wiley & Sons. Ltd. 2011.

    QR CODE
    :::