| 研究生: |
吳冠緯 Guan-Wei Wu |
|---|---|
| 論文名稱: |
低波動異常現象及其預測能力 Low Volatility Anomaly and Its Predictability |
| 指導教授: |
吳庭斌
Ting-pin Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 低波動異常現象 、避風港效應 、公司獨有風險 、布林通道 |
| 外文關鍵詞: | Low volatility anomaly, Safe haven effect, Idiosyncratic risk, Bollinger bands |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低波動異常現象在近年受到許多學者的關注,因為其違反了傳統財務理論對於風險及報酬應當存在正向抵換關係之預期,而是告訴我們低波動度股票報酬會優於高波動度股票報酬。後續除了有學者證實低波動異常現象是一個存在於全球許多主要市場的財務實證現象之外,也有許多學者試圖找出可能的解釋原因。本文除了驗證台灣市場同樣存在低波動異常現象之外,也探討低波動投資組合策略之報酬率與台灣股票市場風險及加權指數報酬率之關係。
本文主要發現使用一個月形成期、一個月持有期以及四周形成期、一周持有期之公司獨有風險作為分類依據的低波動投資組合策略,其低波動異常現象最為明顯。另外也證實了市場風險的提升的確也會加大低波動投資組合策略之報酬率。而最後本文也發現低波動投資組合策略之報酬率與同期的市場風險以及台灣加權指數報酬率較有相關性,可以反映市場當下之避風港效應的發生。
Low volatility anomaly began to attract attention in recent years because it violates the positive trade-off relation between risk and return illustrated by the traditional financial theory. Researches also find that low volatility anomaly is an empirical phenomenon observed worldwide. Still others want to come up with possible reasons in order to explain this puzzle. This thesis finds that low volatility anomaly also exists in Taiwan stock market, and aims to discuss the relation between the low volatility portfolio and TAIEX.
This thesis finds that using one-month formation period with one-month holding period and four-week formation period with one-week holding period and sorting the companies by idiosyncratic risk demonstrates the strongest low volatility anomaly. This thesis also finds that when the volatility of stock market increases, the low volatility portfolio will have a better performance. Finally, this thesis finds that the performance of the low volatility strategy is related to the volatility of stock market and the performance of market portfolio simultaneously. Indeed, low volatility anomaly can reflect the current safe haven effect of stock market.
1. Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The cross‐section of volatility and expected returns. The Journal of Finance, 61(1), 259-299.
2. Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2009). High idiosyncratic volatility and low returns: International and further U.S. evidence. Journal of Financial Economics, 91(1), 1-23.
3. Baker, M., Bradley, B., & Wurgler, J. (2011). Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1), 40-54.
4. Bali, T. G., & Cakici, N. (2008). Idiosyncratic volatility and the cross section of expected returns. Journal of Financial and Quantitative Analysis, 43(01), 29-58.
5. Blitz, D. C., & Van Vliet, P. (2007). The volatility effect: Lower risk without lower return. Journal of Portfolio Management, 102-113.
6. Clarke, R., De Silva, H., & Thorley, S. (2006). Minimum-variance portfolios in the U.S. equity market. Journal of Portfolio Management, 33(1), 1-14.
7. Cremers, M., & Weinbaum, D. (2010). Deviations from put-call parity and stock return predictability. Journal of Financial and Quantitative Analysis, 45(2), 335-367.
8. Dichev, I. D., & Yu, G. (2011). Higher risk, lower returns: What hedge fund investors really earn. Journal of Financial Economics, 100(2), 248-263.
9. Dutt, T., & Humphery-Jenner, M. (2013). Stock return volatility, operating performance and stock returns International evidence on drivers of the ‘low volatility’anomaly. Journal of Banking & Finance, 37(3), 999-1017
10. Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. The Journal of Finance, 47(2), 427-465.
11. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3-56.
12. Fu, F. (2009). Idiosyncratic risk and the cross-section of expected stock returns. Journal of Financial Economics, 91(1), 24-37.
13. Garcia-Feijóo, L., Kochard, L., Sullivan, R. N., & Wang, P. (2015). Low-volatility cycles: The influence of valuation and momentum on low-volatility portfolios. Financial Analysts Journal, 71(3), 47-60.
14. Guo, H., & Savickas, R. (2010). Relation between time-series and cross-sectional effects of idiosyncratic variance on stock returns. Journal of Banking & Finance, 34(7), 1637-1649.
15. Huang, W., Liu, Q., Rhee, S. G., & Zhang, L. (2010). Return reversals, idiosyncratic risk, and expected returns. Review of Financial Studies, 23(1), 147-168.
16. Kaul, A., & Sapp, S. (2006). Y2K fears and safe haven trading of the US dollar. Journal of International Money and Finance, 25(5), 760-779.
17. Li, X., Sullivan, R. N., & Garcia-Feijóo, L. (2014). The limits to arbitrage and the low-volatility anomaly. Financial Analysts Journal, 70(1), 52-64.
18. Li, X., Sullivan, R. N., & Garcia-Feijóo, L. (2016). The Low-Volatility Anomaly: Market evidence on systematic risk vs. mispricing. Financial Analysts Journal, 72(1), 36-47.
19. Malkiel, B. G., & Xu, Y. (2006). Idiosyncratic risk and security returns. University of Texas at Dallas. 1-59.
20. Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete
information. The Journal of Finance, 42(3), 483-510.
21. Peterson, D. R., & Smedema, A. R. (2011). The return impact of realized and expected idiosyncratic volatility. Journal of Banking & Finance, 35(10), 2547-2558.
22. Spiegel, M. I., & Wang, X. (2005). Cross-sectional variation in stock returns: Liquidity and idiosyncratic risk. Yale ICF Working Paper, 05-13.
23. Xing, Y., Zhang, X., & Zhao, R. (2010). What does the individual option volatility smirk tell us about future equity returns? Journal of Financial and Quantitative Analysis, 45(3), 641-662.
24. 許菁旂、黃文聰、黃振聰 (2015)。 〈投資人情緒對低波動異常現象的預測力:市
場狀態的影響〉。 管理學報,32(4),399-424