| 研究生: |
吳建鋒 Jian-fong Wu |
|---|---|
| 論文名稱: |
以多重耦合線實現新式多功能微波元件 New Designs of Multi-Functional Microwave Component using Multicoupled Line |
| 指導教授: |
林祐生
Yo-Shen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 多重耦合線 、單刀雙擲帶通濾波器 、低雜訊放大器 |
| 外文關鍵詞: | multicoupled line, SPDT bandpass filter, LNA |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以多重耦合線為核心,並使用負載電容的變化調整頻率響應特性,藉此實現
新式多功能微波元件,以提升將射頻收發機前端電路整合度。
首先,本論文提出五線式多重耦合線實現可切換式帶通濾波器,利用外接電晶體達
到切換功能,並以砷化鎵積體電路實現,將單刀雙擲切換器與帶通濾波器整合於單一元
件中,電路面積僅為0.063λg×0.043λg。其次,運用多重耦合線設計平衡至非平衡轉換
功能帶通濾波器,進一步將單刀雙擲、帶通濾波器與平衡至非平衡轉換器整合,並以砷
化鎵積體電路實現,電路面積僅為0.094λg×0.047λg。最後,運用濾波器可自由設計匹
配阻抗之特性,利用濾波器設計低雜訊放大器的輸入端與輸出端匹配網路,有效地將單
刀單擲切換器、帶通濾波器、低雜訊放大器、平衡至非平衡轉換器整合至單一元件內,
不僅縮小電路面積,也減小各級分開設計串接時所造成不匹配之損耗。
本論文所提出的新式多功能微波元件,以濾波器為基礎,並運用多重耦合線進一步
延伸整合射頻前端多種功能元件,具有簡潔的設計流程與公式,可有效的縮小射頻收發
機面積、成本與設計時間。
In this study, new multi-functional microwave components are achieved based on
multicoupled-line with loaded capacitors to enhance integration of RF front-end circuit.
First of all, five-line coupled-line is used to realize switchable bandpass filter. Besides
using external connected transistors to obtain switch capability, the circuits are implemented
by using the GaAs pHEMT process to achieve very compact size. In this way,
single-pole-double-throw (SPDT) switch and bandpass filter are combined into single element
whose size is only 0.063λg×0.043λg. Second, we use mutlicoupled lines to design balun
bandpass filter integrated with SPDT switch. The proposed circuit is also implemented in
GaAs pHEMT process and the circuit size is only 0.094λg×0.047λg. Finally, use the
impedance matching capability of filter to design Low Noise Amplifier (LNA) whose input
and output matching network can effectively integrate single-pole-single-throw (SPST) switch,
bandpass filter, and balun. In this way, the circuit size can be largely minimized and the
mismatch loss resulted from cascade connection can also be reduced.
The proposed multifunctional microwave component is based on conventional microwave
filter design, and mutlicoupled lines are used to achieve the integration of multiple function
blacks in a RF front-end. Simple design procedure and equations are presented in this study.
Hence, RF transceiver size and cost can be minimized, and shorten designing time can be
achieved.
[1] Chia-Shih Cheng, Chien-Cheng Wei and Rong-Jyi Yang, Hsien-Chin Chiu, “A high isolation 0.15-μm depletion-mode pHEMT SPDT switch using field-plate technology”,
in Asia-Pacific Microwave Conference Proceedings. pp.759-762, 2007.
[2] C. Y. Ou, C.Y. Hsu, H. R. Lin, H. R. Chuang and T. H. Huang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,“ in European Microwave Conference, pp. 250-253, Sep. 2009.
[3] J. Kim, W. Ko ,S.H. Kim, J. Jeong and Y. Kwon, “A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure”, IEEE Microwave
and Wireless Components Letters, vol 13 ,pp. 505-507, Dec. 2003.
[4] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa , “60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[5] W. H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1488-1491, May 2010.
[6] Y. S. Lin, P. Y. Chang and Y. S. Hsieh, “Compact electronically switchable parallel-coupled microstrip bandpass filter with wide stopband,” IEEE Microw. Wireless
Compon., vol. 18, no. 4, pp. 254-256, Apr. 2008.
[7] Y.-S. Lin, P.-C. Wang, C.-W. You and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[8] S. F. Chao, C. H. Wu, and Z. M. Tsai, H. Wang and C. H. Chen, “Electronically
switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec. 2006.
[9] K.-H Pao, C.-Y. Hsu, H.-R. Chuang, C.-L Lu and C.-Y Chen, "A 3-10GHz broadband CMOS T/R switch for UWB applications" in European Microwave Conference, pp.452-455, Sep. 2006.
[10] S.-F. Chang, J.-L. Chen, H.-W. Kuo and H.-Z. Hsu , “A filter synthesis method applied to millimeter-wave distributed switch design,” in European Microwave Conference, pp.1295-1298, Oct. 2003.
[11] Z. M. Tsai, Y.S. Jiang, J. Lee, K.Y. Lin and H. Wang “Analysis and design of bandpass single-pole-double-throw FET filter-integrated switches” IEEE Trans. on Microwave Theory and Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2007.
[12] J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong and H. Wang, “A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm- MHEMT technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 551–554, Jun. 2008.
[13] W.H. Liao, C. S. Chen and Y. S. Lin, “ Single-chip integration of electronically switchable bandpass filter for 3.5GHz WiMAX application,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1368-1371 May 2010.
[14] Guan, X., Jin, Y. and Nguyen, “Design of high-performance compact CMOS distributed amplifiers with on-chip patterned ground shield inductors, ” Electronics Letters, vol.45,no. 15,pp. 791-792, July 2009.
[15] Sabine Long, Laurent Escotte, Jacques Graffeuill, Philippe Fellon and Daniel Roques,“Ka-band coplanar low-noise amplifier design with power PHEMTs,” in European
Microwave Conference, pp. 17 - 20, Oct. 2003.
[16] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J.Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[17] Sheng-Ming Luo, Shou-Hsien Weng, Yan-Liang Ye, Chi-Hsien Lin, Chia-Ning Chung and Hong-Yeh Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[18] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[19] To-Po Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept.2010.
[20] Andreas Axholt, Waqas Ahmad and Henrik Sjöland, “A 90nm CMOS UWB LNA,”IEEE Norchip, pp. 25-28. Nov. 2008.
[21] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless
front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[22] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[23] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[24] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[25] Rezaul Hasan, S.M. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[26] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans.Microwave Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[27] 鍾育軒, “微波帶通低雜訊放大器設計, ” 碩士論文, 國立中央大學, June 2009.
[28] R. Sato and E.G. Cristal, “Simplified analysis of coupled tranmission-line networls,”IEEE Trans. Microw. Theory Tech., vol. 18, no. 3, pp. 122-131, Mar. 1970.
[29] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application. New York: Wiley, 2001.
[30] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[31] C.-W. Tang and S.-F You, “Design methodologies of LTCC bandpass filters, diplexer,and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717 – 723, Feb 2006.
[32] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[33] “TDK/product catalog/RF components/multilayer bandpass filters (balance output type),” TDK Corporation, Tokyo, Japan, 2010. [Online]. Available: http://www.tdk.com/, Device Part No. DEA202450BT-7112E1.
[34] “Sosgin/filters/multilayered dielectric balanced filters,” Soshin Electric Company Ltd., Tokyo, Japan, 2010. [Online]. Available: http://www.soshin-ele.com/product/index/,Device Part No. DBF81H904.
[35] van der Heijden, E., H. Veenstra, D. Hartskeerl, M. Notten and D. v. Goor, “Low noise amplifier with integrated balun for 24GHz car radar,” in Proc.SiRF, pp. 78-81,Jan. 2008.
[36] Welch B., Kornegay K.T. and Park H.-M., Laskar J., “A 20 GHz lownoise amplifier with active balun in a 0.25 mm SiGe BICMOS technology,” IEEE J. Solid-State Circuits, vol.40, no. 10, pp. 2092–2097, Oct. 2005.
[37] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[38] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts and B. Nauta “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortioncanceling,”IEEE J.