跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳美君
Mei-chun Chen
論文名稱: 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
Numerical Computation of the 2-D Stationary Incompressible MHD Problem by Iterative Least-Squares Finite Element Schemes
指導教授: 楊肅煜
Suh-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 英文
論文頁數: 28
中文關鍵詞: 最小平方那維爾-史托克方程馬克士威方程有限元素法磁流體方程
外文關鍵詞: least squares, finite element methods, Maxwell''s equations, magneto-hydrodynamic equations, Navier-Stokes equations
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要研究穩態不可壓縮磁流體(MHD)問題的兩種皮卡型迭代最小平方有限元素法數值解。首先引入兩個新未知變數旋度和電流密度,我們可推得在速度-旋度-壓力-磁場-電流密度(VVPMC)形式下的非線性一階不可壓縮MHD問題。接著我們引用兩種皮卡型迭代最小平方有限元素法以求取此一階不可壓縮VVPMC MHD問題之數值解。在每一次皮卡型迭代中,使用加權或未加權的L2最小平方有限元素法求解其相對應的一階歐辛型的問題。針對各種不同流體雷諾數的一階歐辛型問題和非線性一階VVPMC MHD問題,數值實驗結果證明了此類最小平方有限元素法的精確度。最後,我們列出MHD流體通過某個階梯形流場的數值結果。


    In this thesis, we study two Picard-type iterative least-squares finite element schemes for approximating the solution to the stationary incompressible magneto
    -hydrodynamic (MHD) problem. Introducing the additional vorticity and current density variables, we have the non-linear first-order incompressible MHD problem in the velocity-vorticity-pressure-magnetic field-current density (VVPMC) formulation. Two Picard-type iterative least-squares finite element schemes are then applied for finding the numerical solution of the first-order incompressible VVPMC MHD problem. In each Picard iteration, the L2 least-squares finite element scheme with or without weights is employed to approximate the solution of the associated first-order Oseen-type problem. Numerical experiments with various hydrodynamic Reynolds numbers for the first-order Oseen-type problem and the non-linear first-order VVPMC MHD problem are reported to demonstrate the accuracy of the least-squares finite element approach. Finally, numerical results of an MHD flow over a step are also given.

    中文摘要 ......................................... i 英文摘要 ......................................... ii 目錄 ............................................. iii Abstract ......................................... 1 1. Problem formulation ........................... 2 2. Least-squares finite element schemes .......... 6 3. Numerical experiments ......................... 12 4. Numerical results of an MHD flow over a step .. 23 5. Conclusions ................................... 26 References ....................................... 27

    [1] P. B. Bochev, Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
    [2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
    [3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev., 40 (1998), pp 789-837.
    [4] P. B. Bochev, Z. Cai, T. A. Manteuffel and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
    [5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
    [6] F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
    [7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity, ETNA, 3 (1995), pp. 150-159.
    [8] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.
    [9] C. L. Chang, An error estimate of the least squares finite element method for the Stokes problem in three dimensions,Math. Comp., 63 (1994), pp. 41-50.
    [10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
    [11] C. L. Chang, S.-Y. Yang, and C.-H. Hsu,A least-squares finite element method for incompressible flow in stress-velocity-pressure version, Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
    [12] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions, Appl. Math. Comput., 130 (2002), pp. 121-144.
    [13] M.-C. Chen, B.-W. Hsieh, C.-T. Li, Y.-T. Wang,and S.-Y. Yang, A comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier-Stokes equations, preprint, 2007.
    [14] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite element methods for the Stokes equations, SIAM J. Sci. comput.,20 (1998), pp. 878-906.
    [15] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations, SIAM J. Numer. Anal., 41 (2003), pp. 2114-2130.
    [16] J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numer. Math., 87 (2000), pp. 83-111.
    [17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
    [18] U. Hasler, A. Schneebeli, and D. Schotzau, Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Numer. Math., 51 (2004), pp. 19-45.
    [19] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
    [20] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H-1, L2, L2] first-order system least squares for the incompressible Oseen type equations, Appl. Numer. Math., 52 (2005), pp. 77-88.
    [21] A. Schneebeli and D. Schotzau, Mixed finite elements for incompressible magneto-hydrodynamics, C. R. Acad. Sci. Paris, Ser. I, 337 (2003),pp. 71-74.
    [22]D. Schotzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96 (2004), pp. 771-800.
    [23] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least-squares finite element method for the stationary incompressible Oseen problem, J. Comp. Appl. Math., 182 (2005), pp. 211-232.
    [24] Y.-T. Wang, On two iterative least-squares finite element schemes for solving the incompressible Navier-Stokes equations, Master Thesis, December 2007, National Central University, Taiwan.
    [25] S.-Y. Yang, Error analysis of a weighted least-squares finite element method for 2-D incompressible flows in velocity-stress-pressure formulation, Math. Meth. Appl. Sci., 21 (1998), pp. 1637-1654.

    QR CODE
    :::