跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇建霖
Chien-lin SU
論文名稱: 一維滑塊模型事件叢集特性分析與復發時間統計
指導教授: 陳建志
Chien-chih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 滑塊模型復發時間去耦合
外文關鍵詞: Burridge-Knopoff Model, interevent time, decoupling
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震為大自然最具毀滅性的災難之一,由於地震事件往往具有複雜且難以預測之特性,許多地震學家亟欲了解地震發生的機制以及所附帶的效應,期待能夠藉由所觀測到的資料得到可靠的前兆指標,其最終目的便是希望有朝一日能夠對地震事件作出具參考價值的預警系統。在本研究中,利用滑塊模型做數值模擬來產生大量的事件目錄,探討事件目錄的統計特性,由前人研究中可以知道,滑塊模型事件符合地震的Gutenberg-Richter law事件特性,被認為與真實地震一樣,具有自組織臨界特性的動力系統。並且為了使滑塊模型的事件目錄具有真實地震的時間叢集特性,加入了去耦合的條件,在過大位移的塊體進行解耦合後重新鍵結,便可以在事件目錄中看見像是餘震一般的一連串事件。從能量的分析中可以發現叢集事件的能量具有特徵的消長情形,系統藉由叢集事件回到平衡的狀態。對於一般的獨立事件,能量由模型中等速運動的平板所提供,至於叢集事件則是因為在解耦合後重新鍵結時,塊體之間所受彈力不平衡,為了轉移與平衡應力所產生的事件,與地震和餘震之間的關係相似。另一方面為了探究滑塊模型的復發時間特性,可以得到大規模事件具有特徵的再現周期,藉由Weibull分布的擬合結果,估計其對應的參數λ及β,便可以進一步地得到系統在特定規模事件隨著時間的發生率。並在去耦合滑塊模型事件目錄中,發現叢集事件會嚴重的影響擬合的結果,在很短的時間內會出現相當大的事件發生機率,在採取濾除餘震事件的手段後,統計結果便更加地吻合Weibull分布。


    In order to simulate an earthquake fault system which can produce events with earthquake characteristics, we apply the spring-slider model proposed by Burridge and Knopoff in 1967.
    In this paper, we research on that the stick-slip event generated using numerical simulation method, and decoupling conditions is introduced to study on the process of the accumulation of stress in fault zone under condition of healing after decoupling, then a series of clusters are produced after great happening.
    Comparing the spring-slider model with the decoupling condition to the traditional the spring-slider model by using the phase diagram analysis, the relationship between cluster events and trends of them are discussed. Then, the relationship of spring-slider model and earthquake fault structures for natural earthquakes is discussed. Furthermore, the energy of seismic focus, aftershocks and source of stress are discussed.
    Finally, the interevent time of event recorder were counted. Doing some fitting by using the Weibull distribution and reference to β, which can be used to determine the different sections and select the threshold for magnitude of earthquake, discussed the characteristics of its recurrence and reproduction cycle events and the influence degree of the cluster of events.

    摘要 i Abstract ii 誌謝辭 iii 目錄 iv 圖目錄 vi 符號說明 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 第二章 模型設置與分析方法 4 2.1 一維滑塊數值模型設置與解算工具 4 2.2 去耦合機制 6 2.3 事件能量與規模的定義 8 2.4 事件復發時間統計與Weibull分布 10 第三章 一維滑塊模型系統特性 21 3.1 典型滑塊模型基本特性解析 21 3.2 去耦合滑塊模型特性解析 24 3.3 滑塊模型與板塊構造的類比 28 第四章 復發時間統計 51 4.1 典型滑塊模型的事件復發時間統計 51 4.2 去耦合機制下滑塊模型的復發時間統計 52 4.3 復發時間特性與Weibull分布的關連性 54 第五章 討論與結論 61 5.1 滑塊模型中的S值 61 5.2 去耦合機制與事件叢集 62 5.3 結論 65 參考文獻 70

    Burridge, R., & Knopoff, L. Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341-371. 1967.
    Carlson, J. M., & Langer, J. S. Properties of earthquakes generated by fault dynamics. Physical Review Letters, 62(22), 2632. 1989.
    Carlson, J. M., & Langer, J. S. Mechanical model of an earthquake fault. Physical Review A, 40(11), 6470. 1989.
    Carlson, J. M., Langer, J. S., Shaw, B. E., & Tang, C. Intrinsic properties of a Burridge-Knopoff model of an earthquake fault. Physical Review A, 44(2), 884. 1991.
    Chen, C. C., & Wang, J. H. One-dimensional dynamical modeling of slip pulses. Tectonophysics, 487(1), 100-104. 2010.
    Chen, C. C., Wang, J. H., & Huang, W. J. Material decoupling as a mechanism of aftershock generation. Tectonophysics, 546, 56-59. 2012.
    Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., & Held, H. Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences, 105(38), 14308-14312. 2008.
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H., & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theoretical Ecology, 3(3), 163-174. 2010.
    Hasumi, T., Chen, C. C., Akimoto, T., & Aizawa, Y.. The Weibull–log Weibull transition of interoccurrence time for synthetic and natural earthquakes. Tectonophysics, 485(1), 9-16. 2010.
    Heaton, T. H.. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1), 1-20. 1990.
    Knopoff, L., Landoni, J. A., & Abinante, M. S.. Dynamical model of an earthquake fault with localization. Physical Review A, 46(12), 7445. 1992.
    Marone, C., Vidale, J. E., & Ellsworth, W. L. Fault healing inferred from time dependent variations in source properties of repeating earthquakes. Geophysical Research Letters, 22(22), 3095-3098. 1995.
    Marone, C. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature, 391(6662), 69-72. 1998.
    McLaskey, G. C., Thomas, A. M., Glaser, S. D., & Nadeau, R. M. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults. Nature, 491(7422), 101-104. 2012.
    Pepke, S. L., & Carlson, J. M. Predictability of self-organizing systems. Physical Review E, 50(1), 236. 1994.
    Pepke, S. L., Carlson, J. M., & Shaw, B. E. Prediction of large events on a dynamical model of a fault. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B4), 6769-6788. 1994.
    Rundle, J. B., & Klein, W. Nonclassical nucleation and growth of cohesive tensile cracks. Physical review letters, 63(2), 171. 1989.
    Rundle, J. B., Klein, W., & Gross, S. Dynamics of a traveling density wave model for earthquakes. Physical review letters, 76(22), 4285. 1996.
    Rundle, J. B., Gross, S., Klein, W., Ferguson, C., & Turcotte, D. L. The statistical mechanics of earthquakes. Tectonophysics, 277(1), 147-164. 1997.
    Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., & Sammis, C. Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of Geophysics, 41(4). 2003.
    Schwartz, D. P., & Coppersmith, K. J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B7), 5681-5698. 1984.
    Wang, J. H. A note on the correlation between b-value and fractal dimension from synthetic seismicity. Terrestrial, Atmospheric and Oceanic Sciences, 2(4), 317-329. 1991.
    Wang, J. H. Effect of seismic coupling on the scaling of seismicity. Geophysical Journal International, 121(2), 475-488. 1995.
    Wang, J. H. Velocity-weakening friction as a factor in controlling the frequency-magnitude relation of earthquakes. Bulletin of the Seismological Society of America, 86(3), 701-713. 1996.
    Wang, J. H. Effect of frictional healing on the scaling of seismicity. Geophysical research letters, 24(20), 2527-2530. 1997.
    Xu, H. J., & Knopoff, L. Periodicity and chaos in a one-dimensional dynamical model of earthquakes. Physical Review E, 50(5), 3577. 1994.

    QR CODE
    :::