跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李重毅
Chung-I Lee
論文名稱: 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
Improvement of Mechanical Properties and Corrosion Resistance of Mg-based Bulk Metallic Glass Composite by coating Zr-based Metallic Glass Thin Film
指導教授: 鄭憲清
Shian-Ching Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 127
中文關鍵詞: 鎂基塊狀金屬玻璃複材鋯基金屬玻璃薄膜三點抗彎抗腐蝕
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金擁有低的密度以及較高的比強度的優點,但是,其低剛性、加工性差以及較低的抗腐蝕性,造成應用受到限制。本研究選用Mg58Cu31Gd11為基材,利用外添加25 vol.% 的多孔鉬顆粒製成鎂基複材,將鋯基((Zr53Cu30Ni9Al8)99.5Si0.5)金屬玻璃薄膜鍍覆在鎂基複材表面來改善機械性質與抗腐蝕性,並利用三點彎曲進行抗彎強度提升之探討。分別以鋁-鈦(25 nm / 25 nm)與銅(50 nm)作為基材與鍍膜間的緩衝層,根據膠帶附著力測試結果顯示,以鋁-鈦為緩衝層所鍍覆之鋯基金屬玻璃薄膜之附著力(4 B)優於以銅為緩衝層的薄膜之附著力(0 B)。鎂基塊狀金屬玻璃基材與複材於抗彎試驗後,可觀察到多孔鉬顆粒於鎂基塊狀金屬玻璃複材內,可以有效的阻擋裂縫的傳播以及吸收掉裂縫的能量,促使複材的抗彎強度有效提升至180 MPa,且鍍覆鋯基金屬玻璃薄膜的鎂基塊狀金屬玻璃複材抗彎強度更可提高到了254 MPa。由此推論,鋯基金屬玻璃薄膜能有效地覆蓋試片表面的缺陷以及抑制試片表面第一個裂縫的產生,進而提升抗彎強度。另外透過電化學腐蝕試驗(動態極化曲線)得到鍍覆鋯基金屬玻璃薄膜之鎂基塊狀金屬玻璃複材的腐蝕電流密度為9.16x10-8 A/mm2,而鎂基塊狀金屬玻璃基材與複材分別為8.69x10-7 A/mm2與5.65x10-6 A/mm2。因此,由電化學腐蝕試驗的結果可看出鋯基金屬玻璃薄膜可以提供保護鎂基塊狀金屬玻璃複材更優越的耐腐蝕性。


    In order to improve the mechanical properties as well as corrosion resistance of Mg-based metallic glass (BMG) and Mg-based metallic glass composite (BMGC). The Zr-based metallic glass thin film (MGTF) of 200 nm thickness was coated on the Mg-based BMGC with two different buffer layers, Al-Ti (25 nm/25 nm) and Cu(50 nm), for adhesion ability investigation. The BMGC plates (with dimension of 4 mm W x 3 mm T x 35 mm L) of Mg58Cu31Gd11 with 25 vol.% Mo particles (size of 25 m) [2] was selected as the substrate and coated with 200 nm Zr-based ((Zr53Cu30Ni9Al8)99.5Si0.5) MGTF by DC-sputtering. The results of 3-point bending test show that the flexural strength of the Mg-based BMGC (180 MPa) can be significantly enhanced to 254 MPa for the Mg-based BMGC with 200 nm Zr-based MGTF coating. The remarkable increase in flexural strength of the Mg-based BMGC coated with Zr-based MGTF is suggested that the Zr-based MGTF can smooth the surface (by covering the defects on the specimen surface) to prevent the stress concentration and also provide residual stress to suppress the crack initiation from the specimen surface during bending test. In addition, the results of polarization electrochemical test reveal that the Zr-based MGTF exhibits much better corrosion resistance in 0.9 wt. % sodium chloride solution. Accordingly, the coating of 200 nm Zr-based MGTF on the Mg-based BMGC by sputtering is believed a promising method to protect the Mg-based BMGC from the island environment.

    中文摘要 I Abstract II 致謝 III 總目錄 V 表目錄 X 圖目錄 XI 第一章 前言 1 1-1 緒論 1 1-2 研究動機與目的 2 第二章 理論基礎 4 2-1 非晶質合金概述 4 2-2 非晶質合金發展歷程 5 2-3 實驗歸納法則 8 2-3-1 金屬玻璃成型法則 8 2-3-2 外加延性金屬顆粒選擇法 10 2-4 非晶質合金熱力學 11 2-4-1 玻璃轉化溫度(glass transition temperature, Tg) 12 2-4-2 結晶溫度(crystallization temperature, Tx) 12 2-4-3 玻璃形成能力(Glass Forming Ability, GFA) 13 2-5 非晶質合金的特性與應用 14 2-5-1 機械性質 15 2-5-2 耐腐蝕性 16 2-5-3 磁性質 16 2-5-4 其他性質 17 2-5-5 金屬玻璃應用 17 2-6 非晶質合金之製程簡介 18 2-7 金屬玻璃薄膜 21 2-7-1 濺鍍法製作金屬玻璃薄膜(sputtering) [44] 21 2-7-2 金屬玻璃薄膜之抗菌性 23 2-7-3 金屬玻璃薄膜應用於醫療用具 23 2-7-4 金屬玻璃薄膜提升疲勞性質 23 2-7-5 金屬玻璃薄膜改善抗彎性質 24 2-8 彎曲破壞[48] 24 2-9 電化學腐蝕[50] 25 第三章 實驗方法與步驟 39 3-1 鎂基塊狀金屬玻璃基材與複材之製備 40 3-1-1 成份配置 40 3-1-2 真空電弧融煉 40 3-1-3 傾倒式真空感應熔煉法 41 3-1-4 噴鑄式真空感應熔煉法 42 3-1-5 抗彎試片製作 42 3-1-6 腐蝕試片製作 43 3-2 鎂基塊狀金屬玻璃基材與複材之基礎性質分析 43 3-2-1 X光繞射結構分析 43 3-2-2 熱性質分析 43 3-2-3 機械性質分析 44 3-3 鋯基靶材之製備 44 3-3-1 成份配置 44 3-3-2 真空電弧熔煉 45 3-3-3 墜落式鑄造成型 45 3-4 鋯基金屬玻璃薄膜製備 46 3-4-1 金屬玻璃薄膜腐蝕試片製作 46 3-5 金屬玻璃薄膜之基礎性質分析 47 3-5-1 低掠角X光繞射分析 47 3-5-2 附著力測試 47 3-5-3 奈米壓痕測試 47 3-6 利用三點彎曲試驗(3-point bending)進行機械性質分析 48 3-7 微觀結構分析 49 3-7-1 原子力顯微鏡分析 49 3-7-2 掃描式電子顯微鏡、能量散佈光譜儀分析 50 3-7-3 穿透式電子顯微鏡分析 50 3-8 電化學腐蝕試驗(動態極化) 51 第四章 實驗結果 67 4-1 鎂基塊狀金屬玻璃基材與複材之基礎性質分析 67 4-1-1 成份分析 67 4-1-2 鎂基塊狀金屬玻璃基材、複材結構分析 67 4-1-3 熱性質分析 68 4-1-4 多孔鉬顆粒散佈分析 69 4-1-5 鎂基塊狀金屬玻璃基材與複材之硬度與楊氏模數 70 4-2 鋯基金屬玻璃薄膜之基礎性質分析 70 4-2-1 成份分析 70 4-2-2 金屬玻璃薄膜結構分析 71 4-2-3 金屬玻璃薄膜附著力 71 4-2-4 金屬玻璃薄膜厚度觀察 71 4-2-5 金屬玻璃薄膜之硬度與楊氏模數 72 4-3 AFM表面粗糙度分析 72 4-4 三點彎曲試驗 73 4-5 彎曲破壞試片之觀察 74 4-5-1 SEM-破斷面觀察 (cross-section view) 74 4-5-2 SEM-俯視圖觀察 (Top View) 75 4-5-3 TEM觀察 77 4-6 電化學腐蝕試驗 77 第五章 結論 99 第六章 參考文獻 101

    [1] H. Ma, E. Ma, J. Xu, “A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability”, Journal of Materials Research, Vol. 18, Issue 10, 2003, pp. 2288-2291.
    [2] J. S. C. Jang, J. Y. Ciou, T. H. Huang, J. C. Huang, X. H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, APPLIED PHYSICS LETTERS, Vol. 92, 2008, pp. 011930-1-3.
    [3] J. P. Chu, J. E. Greene, J. S. C. Jang, J. C. Huang, Y. L. Shen, P. K. Liaw, Y. Yokoyama, A. Inoue, T. G. Nieh, “Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating”, Acta Materialia, Vol. 60, 2012, pp. 3226-3238.
    [4] A. C. Lund, C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
    [5] 戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,1984年。
    [6] G. P. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar, G. L. Goswami, “Structure relaxation in metallic glasses”, Materials Science and Engineering: A, Vol. 304-306, 2001, pp. 499-504.
    [7] B. D. Cullity, “Element of X-Ray Diffraction”, ADDISON-WESLEY PUBLISHING COMPANY, INC, 1956, p. 101.
    [8] J. R. Scully, A. Gebert, J. H. Payer, “Corrosion and related mechanical properties of bulk metallic glasses”, Journal of Materials Research, Vol. 22, 2007, pp. 302-313.
    [9] T. Egami, “Magnetic amorphous alloys: physics and technological applications”, Reports on Progress in Physics, Vol. 47, 1984, pp. 1601-1725.
    [10] J. Kramer, “Produced the first amorphous metals through vapor deposition”, Annals of Physics, Vol. 19, 1934, p. 37.
    [11] A. Brenner, D. E. Couch, and E. K. Williams, “Electrodeposition of alloys of phosphorus with nickel or cobalt”, Journal of Research of the National Bureau of Standards, Vol. 44, 1950, pp. 109-122.
    [12] W. Klement, R. H. Willens, P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys”, Nature, Vol. 187, 1960, pp. 869-870.
    [13] H. S. Chen, C. E. Miller. “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
    [14] H. S. Chen, “Glassy metals”, Rep. Prog. Phys, Vol. 43, 1980, pp. 364.
    [15] 吳學陞著,新興材料-塊狀非晶質金屬材料,工業材料,第149期,1999年,pp. 154-159。
    [16] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rate (overview)”, Materials Transition, JIM, Vol. 36, 1995, pp. 866-875.
    [17] A. Inoue, K. Hashimoto, “Amorphous and nanocrystalline materials: Preparation, properties, and applications”, Springer, Advances in materials research, 3, 2001.
    [18] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering: A, Vol. 226-228, 1997, pp. 357-363.
    [19] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strength Produced by Metallic Mold Casting Method”, Materials Transition, JIM, Vol. 32, 1991, pp. 609-616.
    [20] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by High-Pressure Die Casting Method”, Materials Transition, JIM, Vol. 33, 1992, pp. 937-945.
    [21] A. Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342.
    [22] C. Y. Haein, D. C. Robert, S. Frigyes, L. J. William, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, Vol. 45, 2001, pp. 1039-1045.
    [23] Y. K. Xu, J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, Vol. 49, 2003, pp. 843-848.
    [24] K. Takenaka, T. Wada, N. Nishiyama, H. Kimura, A. Inoue, “New Pd-Based Bulk Glassy Alloys with High Glass-Forming Ability and Large Supercooled Liquid Region”, Materials Transactions, Vol. 46, 2005, pp. 1720-1724.
    [25] A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys”, Acta mater, Vol. 48, 2000, pp. 279-306.
    [26] D. G. Pan, H. F. Zhang, A. M. Wang, Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 1-3(261904).
    [27] S. R. Elliot, “Physics of Amorphous Materials”, 1990, p. 30.
    [28] D. Turnbull, “Under What Conditions can a Glass be Formed?”, Contemporary Physics, Vol. 10, 1969, pp. 473-488.
    [29] Z. P. Lu, C. T. Liu, “A new glass-forming ability criterion for bulk metallic
    glasses”, Acta Materialia, Vol. 50, 2002, pp. 3501-3512.
    [30] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 1-3(086108).
    [31] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, “Glass forming ability of bulk glass forming alloys”, Scripta Materialia, Vol. 36, 1997, pp. 783-787.
    [32] H. Ma, J. Xu, “Mg-based bulk metallic glass composites with plasticity and high strength”, Applied Physics Letters, Vol. 38, 2003, pp. 2793-2795.
    [33] X. Hui, W. Dong, G. L. Chen, K. F. Yao, “Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites”, Acta Materialia, Vol. 55, 2007, pp. 907-920.
    [34] J. S. C. Jang, S. R. Jian, T. H. Li, J. C. Huang, C. Y. A. Tsaod, C. T. Liu, “Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites”, Journal of Alloys and Compounds, Vol. 485, 2009, pp. 290-294.
    [35] T. Cain, L. G. Bland, N. Birbilis, J. R. Scully, “A Compilation of Corrosion Potentials for Magnesium Alloys”, CORROSION SCIENCE, Vol. 70, 2014, pp. 1043-1051.
    [36] A. Inoue, B. L. Shen, C. T. Chang, “Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system”, Acta Materialia, Vol. 52, 2004, pp. 4093-4099.
    [37] B. Zberg, P. J. Uggowitzer, J. F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, Vol. 8, 2009, pp. 887-891.
    [38] 楊雲凱,物理氣相(PVD)沉積介紹,Nano Communication,22卷,pp. 33-35。
    [39] C. Suryanarayana, A. Inoue, Bulk Metallic Glass, 2011.
    [40] K. Amiya, A. Inoue, “Preparation of Bulk Glassy Mg65Y10Cu15Ag5Pd5 Alloy of 12 mm in Diameter by Water Quenching”, Materials Transaction, Vol. 42, 2001, pp. 543-545.
    [41] Y. Yokoyamaa, K. Fukaura, A. Inoue, “Cast structure and mechanical properties of Zr–Cu–Ni–Al bulk glassy alloys”, Intermetallics, Vol. 10, 2002, pp. 1113-1124.
    [42] X. Gu, L. Q. Xing, T. C. Hufnagel, “Glass-forming ability and crystallization of bulk metallic glass (HfxZr1-x)52.5Cu17.9Ni14.6Al10Ti5”, Journal of Non-Crystalline Solids, Vol. 311, 2002, pp. 77-82.
    [43] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S. C. Jang, Y. Gao, P. K. Liaw, “Thin-film metallic glasses for substrate fatigue-property improvements”, Thin Solid Films, Vol. 561, 2014, pp. 2-27.
    [44] 李正中,薄膜光學與鍍膜技術第二版,藝軒圖書文具有限公司,2001年。
    [45] H. W. Chen, K. C. Hsu, Y. C. Chan, J. G. Duh, J. W. Lee, J. S. C. Jang, G. J. Chen, “Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass”, Thin Solid Films, Vol. 561, 2014, pp. 98-101.
    [46] P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, J. P. Chu, J. C. Huang, “Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating”, Intermetallics, Vol. 31, 2012, pp. 127-131.
    [47] P. H. Tsai, J. B. Li, Y. Z. Chang, H. C. Lin, J. S. C. Jang, J. P. Chu, J. W. Lee, P. K. Liaw, “Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating”, Thin Solid Films, Vol. 561, 2014, pp. 28-32.
    [48] 黃振賢、黃錫鐃,材料實驗(彩色版),新文京開發出版有限公司,2004年。
    [49] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, Vol. 59, 2011, pp. 2243-2267.
    [50] D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall, Upper Saddle River, NJ 07458, 1996.

    QR CODE
    :::