跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝旻莉
Shemile Poblete
論文名稱: On the Velocity Dispersion Profiles of Elliptical Galaxies Using MaNGA IFU Data
指導教授: 高仲明
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 100
外文關鍵詞: BCGs
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,橢圓星系的動力學剖線和星系特質被系統化地探索。最新的研究顯示,一
    種特殊的橢圓星系分類,稱為星團最亮星系,被發現展現幾乎平坦的速度離散度剖
    線,和一般下降曲線不同。所以,從有積分視場單元的攝譜儀資料的大量樣本中分
    類速度離散度剖線是重要的。在紅移小於0.15的MaNGA資料庫中的4800星系裡,大約
    有1400個橢圓星系被判定依據史隆數位巡天中第15次資料發布的光度以及型態資料。在
    我們的樣本中,引入一個經驗的速度離散度剖線並使用最大概似估計擬和,以及線性
    擬和。三種不同的速度離散度剖線被分類出。一些星系特質的關聯性和直方圖也同時
    被探究,包含辨識出的星團最亮星系。


    In this study, kinematic profiles of elliptical galaxies are systematically explored, as well as the correlations between their galactic properties. More recently, a specific type of elliptical galaxy, Brightest Cluster Galaxies (BCGs), was found to demonstrate nearly flat velocity dispersion profiles, which is different from the usual declining profiles. So, categorizing the different types of velocity dispersion profiles is important to be investigated
    in a large sample with integrated field unit (IFU) spectrograph data. Among the 4800 galaxies in MaNGA with redshift range z < 0.15, around 1400 elliptical galaxies are determined
    based on Sloan Digital Sky Survey (SDSS) DR15 photometric and morphological
    data. An empirical velocity dispersion profile is introduced for all elliptical galaxies in our
    samples and found the best fit using maximum likelihood estimation as well as linear fit.
    3 different types of velocity dispersion profiles are categorized. Some galactic properties
    are also studied with their correlations and histograms including identified BCGs.

    Abstract iv Acknowledgements vi List of Figures x List of Tables xii 1 Introduction 1 1.1 The Missing Mass Problem and Flat Rotation Curves . . . . . . . . . . . . 1 1.2 Types of Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Hubble Tuning Fork . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Spiral Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Elliptical Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Brightest Clusters Galaxies (BCGs) . . . . . . . . . . . . . . . . . . 5 1.3 Velocity Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 The Sloan Digital Sky Survey (SDSS) . . . . . . . . . . . . . . . . . . . . . 9 2 Data and Methods 10 2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Integral Field Unit (IFU) and Mapping Nearby Galaxies at APO (MaNGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 MaNGA Pipe3D Value Added Catalog . . . . . . . . . . . . . . . . 12 2.1.3 Marvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 SDSS Photometric Data . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.5 Galaxy Zoo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Elliptical Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Brightest Cluster Galaxies . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Velocity Dispersion Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Empirical Velocity Dispersion Profile (EVDP) . . . . . . . . . . . . . . . . 17 2.5 Maximum Likelihood Estimation and Residual Sum of Squares . . . . . . . 18 3 Results 20 3.1 Visual Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Fitting with the EVDP and the Linear Models . . . . . . . . . . . . . . . . 21 3.2.1 MLE Result and Parameter Distribution . . . . . . . . . . . . . . . 22 3.2.2 Residual Sum of Squares . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Parameter Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3 Star Formation Correlation . . . . . . . . . . . . . . . . . . . . . . 28 4 Discussion 31 5 Conclusions and Future Works 34 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bibliography 36 A Fitted Velocity Dispersion Profiles 39 A.1 EVDP Classified Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A.2 Linear Classified Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.3 Unclassified Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 B Table of Fitting Results 56 C Relation between Velocity and Mass Distributions 86

    Binney, J., & Merrifield, M. (1998). Galactic astronomy. Princeton University Press.
    Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies
    of various morphological types (Doctoral dissertation). Groningen University.
    Brownson, S., Bluck, A. F. L., & Roberto Maiolino, G. C. J. (2022). What drives galaxy
    quenching? a deep connection between galaxy kinematics and quenching in the
    local universe. Monthly Notices of the Royal Astronomical Society, 511 (2), 1913–
    1941.
    Bundy, K., Bershady, M. A., Law, D. R., Yan, R., Drory, N., MacDonald, N.,Wake, D. A.,
    Cherinka, B., Sánchez-Gallego, J. R., Weijmans, A.-M., Thomas, D., Tremonti, C.,
    Masters, K., Coccato, L., Diamond-Stanic, A. M., Aragón-Salamanca, A., Avila-
    Reese, V., Badenes, C., Falcón-Barroso, J., . . . Zhang, K. (2014). Overview of the
    SDSS-IV MaNGA survey: Mapping nearby galaxies at apache point observatory.
    The Astrophysical Journal, 798 (1), 7. https://doi.org/10.1088/0004-637X/798/1/7
    Cherinka, B., Andrews, B. H., Sánchez-Gallego, J., Brownstein, J., Argudo-Fernández,
    M., Blanton, M., Bundy, K., Jones, A., Masters, K., Law, D. R., Rowlands, K.,
    Weijmans, A.-M., Westfall, K., & Yan, R. (2019). Marvin: A tool kit for streamlined
    access and visualization of the SDSS-IV MaNGA data set. The Astronomical
    Journal, 158 (2), 74. https://doi.org/10.3847/1538-3881/ab2634
    Cowie, L. L., & Binney, J. (1977). Radiative regulation of gas flow within clusters of
    galaxies: A model for cluster x-ray sources. Astrophysical Journal, 215, 723–732.
    de Vaucouleurs, G. (1948). Recherches sur les nebuleuses extragalactiques. Annales
    d’Astrophysique, 11, 247.
    Dubinski, J. (1998). The origin of the brightest cluster galaxies. The Astrophysical Journal,
    502 (1), 141. https://doi.org/10.1086/305901
    Durazo, R., Hernandez, X., Sodi, B. C., & Sánchez, S. F. (2017). A Universal Velocity
    Dispersion Profile for Pressure Supported Systems: Evidence for MONDian Gravity
    across Seven Orders of Magnitude in Mass. The Astrophysical Journal, 837 (2), 179.
    https://doi.org/10.3847/1538-4357/aa619a
    Faber, S. M., & Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for
    elliptical galaxies. Astrophysical Journal, 204, 668–683.
    Hine, N. (2017). Galaxy Evolution in a z3 Protocluster (Doctoral dissertation). University
    of Hertfordshire.
    Hsu, Y.-H., Lin, Y.-T., Huang, S., Nelson, D., Rodriguez-Gomez, V., Lai, H.-T., Greene,
    J., Leauthaud, A., Aragón-Salamanca, A., Bundy, K., Emsellem, E., Merrifield, M., More, S., Okabe, N., Rong, Y., Brownstein, J. R., Lane, R. R., Pan, K., &
    Schneider, D. P. (2022). SDSS-IV MaNGA: Cannibalism Caught in the Act–On
    the Frequency of Occurrence of Multiple Cores in Brightest Cluster Galaxies. The
    Astrophysical Journal, 933 (1), 61. https://doi.org/10.3847/1538-4357/ac6d66
    Hubble, E. (1926). Extragalactic nebulae. Astrophysical Journal, 64, 321–369.
    Lin, Y.-T., & Mohr, J. J. (2004). K-band properties of galaxy clusters and groups: Brightest
    cluster galaxies and intracluster light. The Astrophysical Journal, 617 (2), 879–
    895. https://doi.org/10.1086/425412
    Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick,
    M. J., Nichol, R. C., Szalay, A., Andreescu, D., Murray, P., & Vanderberg, J.
    (2008). Galaxy zoo: Morphologies derived from visual inspection of galaxies from
    the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society,
    389 (3), 1179–1189. https://doi.org/10.1111/j.1365-2966.2008.13689.x
    Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Edmondson, E., Masters, K., Nichol,
    R. C., Raddick, M. J., Szalay, A., Adreescu, D., Murray, P., & Vanderberg, J.
    (2011). Galaxy zoo 1: Data release of morphological classifications for nearly 900
    000 galaxies. Monthly Notices of the Royal Astronomical Society, 410 (1), 166–178.
    Merritt, D. (1984). Relaxation and tidal stripping in rich clusters of galaxies. ii. evolution
    of the luminosity distribution. Astrophysical Journal, 276, 26–37.
    Ostriker, J. P., & Hausman, M. (1977). Cannibalism among the galaxies: Dynamically
    produced evolution of cluster luminosity functions. Astrophysical Journal, 217,
    L125–L129.
    Ostriker, J. P., & Peebles, P. J. E. (1973). A numerical study of the stability of flattened
    galaxies: Or, can cold galaxies survive? Astrophysical Journal, 186, 467–480.
    Ostriker, J. P., & Tremaine, S. (1975). Another evolutionary correction to the luminosity
    of giant galaxies. Astrophysical Journal, 202, L113–L117.
    Quintana, H., & Lawrie, D. G. (1982). On the determination of velocity dispersions for
    cD clusters of galaxies. Astrophysical Journal, 87 (1).
    Renzini, A., & Peng, Y.-J. (2015). An objective definition for the main sequence of starforming
    galaxies. The Astrophysical Journal Letters, 801 (2), L29.
    Romanowsky, A. J., Douglas, N. D., Arnaboldi, M., Kuijken, K., Merrifield, M. R., Napolitano,
    N. R., Capaccioli, M., & Freeman, K. C. (2003). A dearth of dark matter in
    ordinary elliptical galaxies. Science, 301 (5640), 1696–1698.
    Rubin, V. C., Ford, W. K. J., & Thonnard, N. (1978). Extended rotation curves of highluminosity
    spiral galaxies. IV. Systematic dynamical properties, Sa -> Sc. Astrophysical
    Journal, 225, L107–L111.
    Rubin, V. C., Ford, W. K. J., & Thonnard, N. (1980). Rotational properties of 21 Sc
    galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to
    UGC 2885 (R=122kpc). Astrophysical Journal, 238, 471–487.
    Rubin, V. C., & Ford, W. K. J. (1970). Rotation of the andromeda nebula from a spectroscopic
    survey of emission regions. Astrophysical Journal, 159, 379–403.
    Sánchez, S., Pérez, E., Sánchez-Blázquez, P., García-Benito, R., Ibarra-Mede, H.,
    González, J., Rosales-Ortega, F., Sánchez-Menguiano, L., Ascasibar, Y., Bitsakis,
    T., Law, D., Cano-Díaz, M., López-Coba, C., Marino, R., De Paz, A., López-
    Sánchez, A., Barrera-Ballesteros, J., Galbany, L., Mast, D., . . . Roman-Lopes, A.
    (2016). Pipe3D, a pipeline to analyze integral field spectroscopy data: II. Analysis
    sequence and CALIFA dataproducts. Revista Mexicana de Astronomia y Astrofisica,
    52 (1), 171–220.
    Sandage, A., & Hardy, E. (1973). The Redshift-Distance Relation. VII Absolute Magnitudes
    on the First Three Ranked Cluster Galaxies as Functions of Cluster Richness
    and Bautz-Morgan Cluster Type: the Effect of qo. Astrophysical Journal, 183, 743–
    758.
    Schombert, J. M. (1986). The Structure of Brightest Cluster Members. I. Surface Photometry.
    Astrophysical Journal Supplement, 60, 603.
    SDSS. (2018). MaNGA DR17 Overview. https://www.sdss4.org/dr17/manga/
    SDSS. (2019). Sloan digital sky survey [Accessed: 2022-8-24]. https://sloan.org/programs/
    research/sloan-digital-sky-survey
    Tian, Y., Cheng, H., McGaugh, S., Ko, C.-M., & Hsu, Y.-H. (2021). Mass-Velocity Dispersion
    Relation in MaNGA Brightest Cluster Galaxies. The Astrophysical Journal
    Letters, 917 (1), 10.
    Tully, R. B., & Fisher, J. R. (1977). A new method of determining distances to galaxies.
    Astronomy and Astrophysics, 54, 661–673.
    Zwicky, F. (1933). The redshift of extragalactic nebulae. Helvetica Physica Acta, 6, 110–
    127.

    QR CODE
    :::