| 研究生: |
何孟晏 Meng-Yen Ho |
|---|---|
| 論文名稱: |
廣波域光譜擷取即時反射係數軌跡之光學監控鍍膜研究 Real Time Reflection Coefficient Loci Monitoring for the Thin Film Deposition |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 鍍膜 、薄膜 、廣波域 、光譜 、即時 、反射係數 、軌跡 、光學監控 、濾光片 、抗反射膜 、長波通濾光片 、濺鍍 、離子束 |
| 外文關鍵詞: | loci, reflection coefficient, thin film, coating, optical monitoring, filter, antireflection filter, high pass filter, IBSD, Ion Beam Sputtering Deposition, real time, broadband |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時間的推移與演進,科學與科技的發展有著快速且顯著的進步,而光學薄膜的應用與發展也越來越廣闊。雖然光學薄膜並不十分的起眼,但是在眾多的科學技術以及科技產品中都需要使用到光學薄膜,例如生活中的眼鏡、相機、顯示器、光纖通訊,工業工程上的干涉儀、顯微鏡、半導體曝光機以及軍事上的飛彈、人造衛星……。由此可見,光學薄膜的運用十分廣泛。光學薄膜可以不一定為主角,但一定是不可或缺的關鍵配角。所以要如何製造出高品質的光學薄膜變得是個非常重要的研究課題。
要製造出高品質光學薄膜的關鍵在於該如何有效監控實際的鍍膜情況,並且判斷出精確且合適的停鍍點。現今鍍製光學薄膜大多採用能即時監控薄膜成長中光學成效變化的光學監控。
光學監控所觀測的是樣品穿透率或是反射率的變化,並且以此變化判斷出合適的停鍍點以及誤差補償。傳統光學監控大多採用單波長定值監控法或是廣波域監控法,但是以上兩種光學監控法皆有各自的優缺點。
本研究提出一種新型式的光學監控鍍膜系統(反射係數軌跡監控法),此系統結合單波長定值監控法具有停鍍點判斷容易之優點,與廣波域監控法能同時一次得到多波長的光學訊息之優點,並且避開各自的缺點,讓鍍膜時能更容易判斷出精確的停鍍點與誤差補償。
There are many thin-film technologies in our life. How do we make high quality optical filters? That is a very important issue. Monitoring is a key point that influences the performance of output optical coatings. For a costly optical filter fabrication, more precise optical monitor is necessary. Optical monitoring methods are generally applied on the optical coating productions today. Optical monitoring in which the real time optical performance change can be directly observed is commonly thought a better way to help operators determine the suitable termination point for each thin film layer during coating process. The most popular one is the variable monochromatic wavelength monitor. But it can’t get more real time inspections of the optical performance of deposited films. In broadband monitor, there are many wavelengths need to be considered and it is hard to make sure what the correct termination point. We propose a novel method to gather the broadband spectrum information and convert the information to single wavelength reflection coefficient loci. It combines the advantages of broadband monitor and single wavelength monitor to let operator terminate the deposition in one absolute point with good error compensations. Our real time reflection coefficient loci monitor has advantages of both broadband monitor and single wavelength monitor methods, but doesn’t have their defects.
1. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectirc thin-film optical filters”, Optica Acta, 19, pp. 1-28. (1972).
2. C. J. van der Laan, 1986, “Optical Monitoring of Nonquarterwave Stacks”, Applied Optics, Vol. 25, pp. 753-760. (1972).
3. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pwlletier, and P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors”, Thin Solid Films, 13, pp. 285-290. (1972).
4. H. A. Macleod, “Error compensation mechanisms in some thin-film monitor systems”, Opt. Acta, 17, pp. 907-930. (1977).
5. H. A. Macleod, “Monitor of optical coatings”, Appl. Opt., 20, pp. 82-89. (1981).
6. H. K. Pulker, Coatings on Glass, Elsevier, Amsterdam, Chap. 7, pp. 297-299. (1984).
7. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Elsevier Science Pub Co (1987).
8. A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions”, Sensors and Actuators A, 63, pp. 41-46. (1997).
9. S. Larouche, A. Amassian, B. Baloukas, and L. Martinu, “Turning-point monitoring is not simply optical thickness compensation”, Optical Interference Coatings Ninth Topical Meeting, TuE8. (2004).
10. S. Dligatch, R. Netterfield, and B. Martin, “Application of in-situ ellipsometry to the fabrication of multilayered coatings with sub-nanometre accuracy,” Thin Solid Films, pp. 455-456, 376. (2004).
11. C. C. Lee, K. Wu, C. C. Kuo and S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths”, Optics Express, 13, pp. 4854-4861. (2005).
12. N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak and J. C. Wyant, “ Dynamic interferometry ,” Proc. SPIE 5875 , 58750F (2005).
13. J. Millerd, N. Brock, J. Hayes, B. Kimbrough, M. Novak, M. North-Morris and J. C. Wyant, “Modern Approaches in Phase Measuring Metrology ,” Proc. of SPIE 5856, pp. 14-22 (2005).
14. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production,” Appl. Opt. 45, pp. 7863-7870. (2006).
15. B. Chun, C. K. Hwangbo, and J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14, pp. 2473-2480. (2006).
16. B. Kimbrough, J. Millerd, J. Wyant, J. Hayes, “Low Coherence Vibration Insensitive Fizeau Interferometer,” Proc. SPIE 6292, 62920F (2006).
17. A. Tikhonravov and M. Trubetskov, “Eliminating of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory,” Appl. Opt. 46, pp. 2084-2090. (2007).
18. B. Badoil, F. Lemarchand,* M. Cathelinaud, and M. Lequime “Interest of broadband optical monitoring for thin-film filter manufacturing”, Appl. Opt., 46, pp. 4294-4303. (2007).
19. C. C. Lee and K. Wu, “In situ sensitive optical monitoring with proper error compensation”, Optics Letters, 32, pp. 2118-2120. (2007).
20. 李正中 , “薄膜光學與鍍膜技術(Thin Film Optics and Coating Technology) 第六版”, 藝軒圖書出版社 (2009).