跳到主要內容

簡易檢索 / 詳目顯示

研究生: 饒高聖
Kao-Sheng Jao
論文名稱: 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
Numerical study of extreme ultraviolet light source from a Sn laser-produced plasma in dual-pulse scheme
指導教授: 陳仕宏
Shih-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 雙脈衝雷射雷射激發電漿轉換效率極紫外光
外文關鍵詞: dual-pulse laser, laser-produced plasma, conversion efficiency, extreme ultraviolet light, tin
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,極紫外光是半導體製程中非常重要的光源,其可以提升半導體光微影技術的解析度。使用雷射加熱靶材的方式產生極紫外光,會有較高的轉換效率,因此成為了熱門的研究對象。由於雷射激發靶材產生極紫外光的過程太過複雜且實驗測試的費用太高,我們使用程式模擬來了解物理特性與該使用哪些參數去提升轉換效率。基於過去的研究指出,與單一脈衝相比,使用雙脈衝雷射加熱靶材可以更有效的提升極紫外光的轉換效率。希望由本次研究可以更進一步去釐清雙脈衝雷射產生極紫外光系統中,各種雷射參數與延遲時間對轉換效率的影響。最後,在主要脈衝參數給定的情況下,我們可以由模擬給出最佳化轉換效率的預脈衝能量,再由我們計算出的通用經驗公式,決定出適合的預脈衝寬度與其對應的強度與延遲時間。


    In recent years, extreme ultraviolet light is a very important light source in the semiconductor process, which can enhance the resolution of semiconductor light lithography technology. Research for the extreme ultraviolet light sources based on laser-produced plasma become popular, due to its high conversion efficiency. The laser-produced plasma system is too expensive to test experimental parameters, so we use numerical simulations to understand the physical properties and which parameters to use to improve conversion efficiency. Previous studies have shown that the use of dual-pulse laser system can enhance the conversion efficiency more effectively compared to the single pulse system. The influences of pre-pulse parameters, main pulse parameters and delay time on EUV conversion efficiency characteristics were discussed in the paper. Our results show that we can use the universal empirical formula to determine the optimized parameters of pre-pulse under knowing main-pulse information.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 V 第一章 緒論 1 第二章 理論背景 5 2.1 雷射產生電漿的過程 5 2.2電漿的動力學過程 6 2.3雷射傳遞 10 2.4雷射吸收 11 2.5 EUV產生的原子與輻射過程 12 2.6 原子譜線拓寬 15 2.7 電漿中的不透明度 17 第三章 模擬模型 19 3.1模擬流程 19 3.2流體模型 19 3.3電漿平衡模型 21 3.4離子內的電子能階分布 23 3.5輻射傳輸與定量計算極紫外光 24 3.6模擬模型之驗證 26 第四章 結果與討論 29 4.1預脈衝特徵與延遲時間對極紫外光轉換效率的影響 29 4.2主要脈衝特徵對極紫外光轉換效率的影響 32 總結:雙脈衝雷射系統中最佳化的預脈衝條件 36 第五章 總結 37 參考文獻 38

    [1] ISO 21348 Process for Determining Solar Irradiances
    [2]CHIEW-SENG KAOY,RADIATION STUDIES OF THE TIN-DOPED MICROSCOPIC DROPLET LASER PLASMA LIGHT SOURCE SPECIFIC TO EUV LITHOGRAPHY, University of Central Florida, 2006.
    [3]V.Bakshi,EUV Sources for Lithography, Bellingham, Washington USA,SPIE Press, 2005.
    [4]Yi-Ping Lai, “A SIMPLIFIED SPHERICAL-SYMMETRY SIMULATION MODEL FOR THE GENERATION OF 13.5-NM EXTREME ULTRAVIOLET SOURCE BY LASER-PRODUCED PLASMA”, National Taiwan University, Master Thesis, 2012.
    [5] T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, et al.,”Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Applied physics letters, vol. 89, no. 15, p. 1501, 2006.
    [6] A. Endo, H. Hoshino, T. Suganuma, M. Moriya, T. Ariga, Y. Ueno, M. Nakano, T. Asayama, T. Abe, H. Komori, et al., ” Laser produced euv light source development for hvm,” in Advanced Lithography, pp. 65170O-65170O, International Society for Optics and Photonics, 2007.
    [7] J. White, P. Dunne, P. Hayden, F. O'Reilly, and G. O'Sullivan, “Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength," Applied physics letters, vol. 90, no. 18, 2007.
    [8] D. Campos, S. Harilal, and A. Hassanein, "Laser wavelength effects on ionic and atomic emission from tin plasmas," Applied Physics Letters, vol. 96, no. 15, p. 151501, 2010.
    [9] D. Campos, S. Harilal, and A. Hassanein, "The effect of laser wavelength on emission and particle dynamics of Sn plasma," Journal of Applied Physics, vol. 108, no. 11, p. 113305, 2010.
    [10]Igo V.Fomenkov, David C.Brandt, Alexander N. Bykanov, Alex I. Ershov, William N.Partlo, David W. Myers, Norbert R. Böwering, Nigel R. Farrar, Georgiy O. Vaschenko, Oleh V. Khodykin, Jerzy R. Hoffman, Christopher P. Chrobak, Shailendra N. Srivastava, Daniel J. Golich, David A. Vidusek, Silvia De Dea, Richard R. Hou, “Laser-Produced Plasma Light Source for EUVL,” Proc. of SPIE Vol. 7271 727138-1, 2009.
    [11]Junichi Fujimoto, Tsukasa Hori, Tatsuya Yanagida, Hakaru Mizoguchi, ”Development of Laser-Produced Tin Plasma-Based EUV Light
    Source Technology for HVM EUV Lithography,” Physics Research International, Volume 2012, Article ID 249495, 11 pages.
    [12] K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, et al., "Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithographya," Physics of Plasmas (1994-present), vol. 15, no. 5, p. 056708, 2008.
    [13] T. Sizyuk and A. Hassanein, "Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography," Physics of Plasmas (1994 present), vol. 19, no. 8, p. 083102, 2012.
    [14] T. Sizyuk and A. Hassanein, "Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application," Journal of Applied Physics, vol. 112, no. 3, p. 033102, 2012.
    [15] J. White, Opening the Extreme Ultraviolet Lithography Source Bottleneck: Developing a 13.5-nm Laser-produced Plasma Source for the Semiconductor Industry. PhD thesis, University College Dublin, 2006.
    [16]Po-Yen Lai, ” Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source,” PhD thesis, National Central University,2016.
    [17] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion of Gases, Notes Added in 1951. Cambridge university press, 1952.
    [18] L. Spitzer Jr and R. Hrm,”Transport phenomena in a completely ionized gas,”Physical Review, vol. 89, no. 5, p. 977, 1953.
    [19] T. W. Johnston and J. M. Dawson,”Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,”Physics of Fluids (1958-1988), vol. 16, no. 5, pp. 722722, 1973.
    [20] J. Huba,”Nrl plasma formulary supported by the office of naval research,”Naval Research Laboratory, 2013.
    [21] A. Einstein,”Zur quantentheorie der strahlung,”Physikalische Zeitschrift, vol. 18, pp. 121-128, 1917.
    [22] R. C. Hilborn,”Einstein coefficients, cross sections, f values, dipole moments, and all that,”arXiv preprint physics/0202029, 2002
    [23] M. Busquet, M. Klapisch, and A. Bar-Shalom,”Absorption and emission proles of unresolved arrays near local thermodynamic equilibrium,”Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 81, no. 1, pp. 255263, 2003.
    [24] G. Wertheim, M. Butler, K. West, and D. Buchanan,”Determination of the gaussian and lorentzian content of experimental line shapes,”Review of Scientic Instruments, vol. 45, no. 11, pp. 1369-1371, 1974.
    [25] A. Djaoui, "A user guide for the laser-plasma simulation code: Med103,"1996.
    [26] D. Colombant and G. Tonon,”X-ray emission in laser-produced plasmas,”Journal of Applied Physics, vol. 44, no. 8, pp. 3524-3537, 1973.
    [27] R. McWhirter,”Plasma diagnostic techniques, edited by rh huddlestone and slleonard (academic, new york, 1965),”Chap, vol. 5, p. 208, 1965.
    [28] G.Gupta and B.Sinha,”Parametric dependence of x-ray laser gain in laser plasmas for 3p-3s transitions in neon-like krypton ions, ”Journal of applied physics, vol. 77, no. 6, pp. 2287-2290, 1995.
    [29] M. Itoh, T. Yabe, and S. Kiyokawa,”Collisional-radiative and average-ion hybrid models for atomic processes in high-z plasmas,”Physical Review A, vol. 35, no. 1, p. 233, 1987.
    [30] S. Chandrasekhar, An introduction to the study of stellar structure, vol. 2. Courier Corporation, 1957.
    [31] V. Sizyuk, A. Hassanein, and T. Sizyuk, "Three-dimensional simulation of laser produced plasma for extreme ultraviolet lithography applications," Journal of applied physics, vol. 100, no. 10, p. 103106, 2006.
    [32] J. White, P. Dunne, P. Hayden, and G. OaeSullivan, "Simplified one-dimensional calculation of 13.5 nm emission in a tin plasma including radiation transport," Journal of Applied Physics, vol. 106, no. 11, p. 113303, 2009.
    [33] J. Christiansen, D. Ashby, and K. Roberts, "Medusa a one-dimensional laser fusion code," Computer Physics Communications, vol. 7, no. 5, pp. 271-287, 1974.
    [34] R. D. Cowan, The theory of atomic structure and spectra, vol. 3. Univ of California Press, 1981.
    [35] A. Cummings, G. O'Sullivan, P. Dunne, E. Sokell, N. Murphy, and J. White, "Conversion efficiency of a laser-produced Sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody," Journal of Physics D: Applied Physics, vol. 38, no. 4, p. 604, 2005.
    [36] V. Sizyuk, A. Hassanein, V. Morozov, T. Sizyuk, et al., "Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in euv applications.," tech. rep., Argonne National Laboratory (ANL), 2007.
    [37]Christian Wagner, Noreen Harned, ”EUV lithography: Lithography gets extreme. ” Nature Photonics 4, 24 - 26 (2010)
    [38] Y. Shimada, H. Nishimura, M. Nakai, K. Hashimoto, M. Yamaura, Y. Tao, K. Shigemori, T. Okuno, K. Nishihara, T. Kawamura, et al., “Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams,”Applied Physics Letters, vol. 86, no. 5, p. 051501, 2005.
    [39] Katsunobu Nishihara, Atsushi Sunahara, Akira Sasaki, Masanori Nunami, Hajime Tanuma, et al., "Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography" Phys Plasmas 15, 056708, 2008
    [40] Shinsuke FUJIOKA, Hiroaki NISHIMURA, Katsunobu NISHIHARA, Noriaki MIYANAGA, Yasukazu IZAWA, Kunioki MIMA, Yoshinori SHIMADA, Atsushi SUNAHARA, “Laser Production of Extreme Ultraviolet Light Source for the Next Generation Lithography Application,” Plasma and Fusion Research, Vol. 4, p. 048, 2009.

    QR CODE
    :::