跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張振唐
JHEN-TANG,JHANG
論文名稱: 降雨及逕流引致礫石型土石流之現地監測及實驗分析
指導教授: 周憲德
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 168
中文關鍵詞: 火炎山土石流逕流水流功率
外文關鍵詞: Houyenshan, debris flow, runoff, stream power
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究於苗栗縣三義鄉火炎山一號坑進行礫石型土石流現地監測,藉由現地監測影像進行土石流運動特性分析,包括流動歷程、地貌變化、土石流前端部流速、陣流特性及彎道超高分析。彎道超高分析之流速與影像分析之流速,兩者誤差約為8.4%。彙整2016年至2022年間各土石流事件之降雨資料,有效累積雨量(含前期降雨)與土石流流動距離之間具有高度關聯性。本研究為探討火炎山因崖錐堆積或河道堰塞堆積受降雨逕流引發土石流之流動歷程及相關特性,於室內實驗室進行逕流引致堆積體破壞實驗。分析在不同流量及坡度條件下,顆粒之流動型態、破壞歷程、顆粒流運動特性及堆積體破壞後之各項參數與水流功率間之相關性。


    The field monitoring of gravelly debris flows was conducted at the Houyenshan of San Yi county, Miaoli, Taiwan in this study. The monitoring data, including CCD and several cameras of time lapse photography, were used to analyze the flow history, geomorphological changes, debris flow velocities and super elevations at the bend. observed by compiling the rainfall data from 2016 to 2022. By compiling the debris-flow records and the rainfall data from 2016 to 2022, we found a high correlation between the effective cumulative rainfall and the debris-flow runout distance. The debris flows triggered by the fluidization processes of channel beds by overlying runoff was experimentally performed in this study, which is related to the debris flows occur at Houyenshan due to the mobilization of talus and upstream channel bed during rainfall. The flow patterns and failure processes of granular flows, and the correlations with stream power under different flow and slope conditions were explored.

    目錄 摘要 I Abstract II 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1前言 1 1.2研究目的 1 1.3 研究內容與方法 2 1.4論文架構 3 第二章 文獻回顧 5 2.1土石流基本特性 5 2.1.1土石流之定義 5 2.1.2土石流之特性 5 2.2 土石流分類 7 2.2.1依泥砂顆粒組成分類 7 2.2.2依地貌條件分類 8 2.2.3依土石流湧浪形成方式 8 2.2.4依泥沙含量 9 2.3土石流觸發 9 2.4土石流流速與規模估算 10 2.4.1土石流流速 10 2.4.2土石流規模 11 2.5土石流與降雨特性關係 13 2.6土石流彎道超高計算 14 第三章 現地監測之研究及分析方法 16 3.1 現地監測系統 16 3.1.1研究區域 16 3.1.2現地監測設備 18 3.2現地監測資料之分析方法 22 3.2.1土石流流動歷程與事件前後地貌變化之影像分析 22 3.2.2土石流流速及彎道超高分析 22 3.2.3降雨分析 23 第四章 逕流引致堆積體破壞實驗與分析方法 24 4.1 實驗設備及配置 24 4.2 實驗顆粒材料性質 30 4.3實驗步驟 31 4.4 分析方法 33 4.4.1 堆積體破壞與流況分析 33 4.4.2 顆粒流斷面高度變化歷程分析 33 4.4.3顆粒流波峰之平均流速分析 33 第五章 現地監測結果分析與討論 34 5.1 土石流流動歷程分析 34 5.1.1 2021年8月2日土石流事件 35 5.1.2 2021年8月4日土石流事件 37 5.1.3 2021年8月7日土石流事件 41 5.1.4 斷面高度變化完整歷程 65 5.2 土石流事件前後地貌變化 67 5.2.1 2021年8月7日土石流事件前後地貌對比 67 5.3 土石流流速影像及彎道超高分析 72 5.3.1 影像分析 72 5.3.2 彎道超高分析 79 5.3.3 分析結果比較 85 5.4 降雨分析 87 5.4.1 火炎山一號坑土石流發生之臨界降雨條件 87 5.4.2表5-5及5-6中各項參數說明 88 5.4.3 各雨量參數與土石流流動距離之相關性 98 第六章 逕流引致土石流實驗分析 102 6.1水流功率 102 6.2 坡度與流量對土石流流況之影響 103 6.2.1 流動型態說明 103 6.2.2 各條件下流動型態區分之結果 106 6.3 土石流型態之前端部啟動距離 108 6.4 各斷面之土石流龍頭高度 112 6.5 顆粒流波峰之流速 119 6.6 堆積體破壞後之參數與單寬水流功率之相關性 126 6.6.1 堆積體剩餘長度、尾端高度參數與單寬水流功率之相關性 126 6.6.2 堆積體坡度參數與單寬水流功率之相關性 130 6.6.3堆積體內滲流坡度與單寬水流功率之相關性 138 第七章 結論與建議 141 7.1 結論 141 7.2建議 143 參考文獻 145

    [1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
    [2] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
    [3] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
    [4] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功 大學水利及海洋工程研究所,博士論文。
    [5] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大 學土木工程研究所,碩士論文。
    [6] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
    [7] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
    [8] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
    [9] 羅傳鈞(2021),「火炎山土石流監測及逕流引致土石流實驗」,國立中央大學土木工程研究所,碩士論文。
    [10] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw。
    [11] Coviello, V., Theule, J. I., Marchi, L., Comiti, F., Cavalli, M. and Arattano, M. (2019), “Deciphering sediment dynamics in a debris-flow catchment: insights from instrumental monitoring and high-resolution topography”, 7th International Conference on Debris-Flow Hazards Mitigation.pp.103-110
    [12] Chow, V. T. (1959), “Open-channel hydraulics”, McGraw-Hill, New York.
    [13] Cui, P. (1999), “Impact of debris flow on river chanel in the upper reachesof the Yangtze River”, International Journal of Sediment Research, Vol. 14, pp. 201–203.
    [14] Cui, P., Guo, X., Yan, Y., Li, Y. and Ge, Y. (2018) , “Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area”, Geomorphology, Vol. 321, pp.153–166.
    [15] Cui, P., Zeng, C. and Lei, Y. (2015), “Experimental analysis on the impact force of viscous debris flow”, Earth Surf. Process. Landforms, Vol.40, pp.1644-1655.
    [16] Caine, N. (1980), “The Rainfall Intensity-During Control of Shallow Landslides and Debris Flows”, Geografiska Annaler, Vol.62, pp.23-27.
    [17] Fan, R. L., Zhang, L. M., Wang, H. J. and Fan, X. M. (2018), “Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake”, Engineering Geology, Vol.235, pp.1-10.
    [18] Fei, X. J. and Shu, A. P. (2004), “Movement Mechanism and Disaster Control for Debris Flow”, Tsinghua University Press: Beijing.
    [19] Gregoretti, C., Degetto, M. and Boreggio, M. (2016), “GIS-based cell model for simulating debris flow runout on a fan”, J. Hydrol, Vol.534, pp.326–340.
    [20] Hungr, O., Morgan, G.C. and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal, Vol.21, pp.663–677.
    [21] Iverson, R. M. and Vallance, J. W. (2001), “New views of granular mass flows”, Geology, Vol.29, pp.115–118.
    [22] Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, pp.245–296.
    [23] Iverson, R. M., LaHusen, R. G., Major, J. and Zimmerman, C. L. (1994), “Debris flow against obstacles and bends: dynamics and deposits”, American Geophysical Union, Vol.75, pp.274.
    [24] Kaki, T. (1954), “The experimental research for mud-flow”, J. JSECE, Vol.19, pp.1-6.
    [25] Li, Y., Liu, J., Su, F., Xie, J. and Wang, B. (2015), “Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia Gully in China”, Landslides, Vol.12, pp.19-28.
    [26] Lanzoni, S., Gregoretti, C. and Stancanelli, L.M. (2017), “Coarse-grained debris flow dynamics on erodible beds”, Journal of Geophysical Research: Earth Surface, Vol.122, pp.592-614.
    [27] McCoy, S. W., Kean, J. W, Tucker, G. E., Staley, D. M., and Coe, J. A. (2013), “Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequencyr”, Journal of Geophysical Research: Earth Surface, Vol.118, pp.2190-2207.
    [28] McArdell, B. (2016), “Field Measurements of Forces in Debris Flows at the Illgraben: Implications for Channel-Bed Erosion”, International Journal of Erosion Control Engineering, Vol. 9, No. 4, pp. 194-198.
    [29] McArdell, B., Scheidl, C. and Rickenmann, D. (2015) , “Debris-flow velocities and superelevation in a curved laboratory channel”, Can. Geotech. J., Vol. 52, pp. 305-317.
    [30] McClung, D. M. (2001), “Superelevation of flowing avalanches around curved channel bends”, Jourmnal of Geophysical Research, Vol.106, pp.16489-16498.
    [31] Navratil, O., Liébault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G. and Laigle, D. (2013), “High-frequency monitoring of debris-flow propagation along the Real Torrent, Southern French Prealps”, Geomorphology, Vol.201, pp.157-171.
    [32] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
    [33] Prochaska, A. B., Santi, P. M., Higgins, J. D. and Cannon, S. H. (2008), “A study of methods to estimate debris flow velocity”, Landslides, Vol.5, pp.431–444.
    [34] Qian, N. and Wang, Z. Y. (1984), “A preliminary study on the mechanism ofdebris flow”, Acta Geographica Sinica, Vol.39, pp.33-43.
    [35] Pastorello, R., D'Agostino, V., Hürlimann, M.(2020) “Debris flow triggering characterization through a comparative analysis among different mountain catchments”, Catena, Vol.186.
    [36] Rickenmann, D. and Zimmermann, M. (1993), “The 1987 debris flows in Switzerland: documentation and analysis”, Geomorphology, Vol.8, pp.175-189.
    [37] Rickenmann, D. and Koch, T. (1997), “Comparison of debris flow modelling approaches”, Proceedings of the first international conference. ASCE, New York, pp.576–585.
    [38] Scheidl, C. McArdell, B.W. and Rickenmann, D. (2014), “Debris-flow velocities and superelevation in a curved laboratory channel”, Canadian Geotechnical Journal, Vol.52, pp.1–13.
    [39] de Haas, T. and van Woerkom, T. (2016), “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surf. Process. Landforms, Vol.41, pp.1951-1966.
    [40] Takahashi, T. (2009), “A Review of Japanese Debris Flow Research”, International Journal of Erosion Control Engineering, Vol.2, No.1.pp1-14.
    [41] Takahashi, T. (1981), “Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster”, J. Natural Disaster Science, Vol.3, pp.57–89.
    [42] Takahashi, T. (1978), “Mechanical characteristics of debris flow. J. Hydraulics Div”, ASCE, Vol.104, pp.1153–1169.
    [43] Tani, I. (1968), “On debris flow (Yamatsunami)”, Water Science, Vol. 60, pp.106–126.
    [44] VanDine, D.F. (1985), “Debris flow and debris torrents in the Southern Canadian Cordillera”, Canadian Geotechnical Journal, Vol.22, pp.44–68.
    [45] Viel, V., Fort, M., Lissak, C., Graff, K., Carlier, B., Arnaud, F. G., Cossart, E. and Madelin, A. (2018), “Debris-flow functioning and their contribution to sedimentary budgets: the Peynin subcatchment of the Guil River”, Landform Analysis, Vol.36, pp.71-84.
    [46] Zanuttigh, B. and Lamberti, A. (2007), “Instability and surge development in debris flows”, Reviews of Geophysics, Vol.45, pp.1-45.

    QR CODE
    :::