| 研究生: |
張振唐 JHEN-TANG,JHANG |
|---|---|
| 論文名稱: |
降雨及逕流引致礫石型土石流之現地監測及實驗分析 |
| 指導教授: | 周憲德 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 火炎山 、土石流 、逕流 、水流功率 |
| 外文關鍵詞: | Houyenshan, debris flow, runoff, stream power |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於苗栗縣三義鄉火炎山一號坑進行礫石型土石流現地監測,藉由現地監測影像進行土石流運動特性分析,包括流動歷程、地貌變化、土石流前端部流速、陣流特性及彎道超高分析。彎道超高分析之流速與影像分析之流速,兩者誤差約為8.4%。彙整2016年至2022年間各土石流事件之降雨資料,有效累積雨量(含前期降雨)與土石流流動距離之間具有高度關聯性。本研究為探討火炎山因崖錐堆積或河道堰塞堆積受降雨逕流引發土石流之流動歷程及相關特性,於室內實驗室進行逕流引致堆積體破壞實驗。分析在不同流量及坡度條件下,顆粒之流動型態、破壞歷程、顆粒流運動特性及堆積體破壞後之各項參數與水流功率間之相關性。
The field monitoring of gravelly debris flows was conducted at the Houyenshan of San Yi county, Miaoli, Taiwan in this study. The monitoring data, including CCD and several cameras of time lapse photography, were used to analyze the flow history, geomorphological changes, debris flow velocities and super elevations at the bend. observed by compiling the rainfall data from 2016 to 2022. By compiling the debris-flow records and the rainfall data from 2016 to 2022, we found a high correlation between the effective cumulative rainfall and the debris-flow runout distance. The debris flows triggered by the fluidization processes of channel beds by overlying runoff was experimentally performed in this study, which is related to the debris flows occur at Houyenshan due to the mobilization of talus and upstream channel bed during rainfall. The flow patterns and failure processes of granular flows, and the correlations with stream power under different flow and slope conditions were explored.
[1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
[3] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[4] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功 大學水利及海洋工程研究所,博士論文。
[5] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大 學土木工程研究所,碩士論文。
[6] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[7] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
[8] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[9] 羅傳鈞(2021),「火炎山土石流監測及逕流引致土石流實驗」,國立中央大學土木工程研究所,碩士論文。
[10] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw。
[11] Coviello, V., Theule, J. I., Marchi, L., Comiti, F., Cavalli, M. and Arattano, M. (2019), “Deciphering sediment dynamics in a debris-flow catchment: insights from instrumental monitoring and high-resolution topography”, 7th International Conference on Debris-Flow Hazards Mitigation.pp.103-110
[12] Chow, V. T. (1959), “Open-channel hydraulics”, McGraw-Hill, New York.
[13] Cui, P. (1999), “Impact of debris flow on river chanel in the upper reachesof the Yangtze River”, International Journal of Sediment Research, Vol. 14, pp. 201–203.
[14] Cui, P., Guo, X., Yan, Y., Li, Y. and Ge, Y. (2018) , “Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area”, Geomorphology, Vol. 321, pp.153–166.
[15] Cui, P., Zeng, C. and Lei, Y. (2015), “Experimental analysis on the impact force of viscous debris flow”, Earth Surf. Process. Landforms, Vol.40, pp.1644-1655.
[16] Caine, N. (1980), “The Rainfall Intensity-During Control of Shallow Landslides and Debris Flows”, Geografiska Annaler, Vol.62, pp.23-27.
[17] Fan, R. L., Zhang, L. M., Wang, H. J. and Fan, X. M. (2018), “Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake”, Engineering Geology, Vol.235, pp.1-10.
[18] Fei, X. J. and Shu, A. P. (2004), “Movement Mechanism and Disaster Control for Debris Flow”, Tsinghua University Press: Beijing.
[19] Gregoretti, C., Degetto, M. and Boreggio, M. (2016), “GIS-based cell model for simulating debris flow runout on a fan”, J. Hydrol, Vol.534, pp.326–340.
[20] Hungr, O., Morgan, G.C. and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal, Vol.21, pp.663–677.
[21] Iverson, R. M. and Vallance, J. W. (2001), “New views of granular mass flows”, Geology, Vol.29, pp.115–118.
[22] Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, pp.245–296.
[23] Iverson, R. M., LaHusen, R. G., Major, J. and Zimmerman, C. L. (1994), “Debris flow against obstacles and bends: dynamics and deposits”, American Geophysical Union, Vol.75, pp.274.
[24] Kaki, T. (1954), “The experimental research for mud-flow”, J. JSECE, Vol.19, pp.1-6.
[25] Li, Y., Liu, J., Su, F., Xie, J. and Wang, B. (2015), “Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia Gully in China”, Landslides, Vol.12, pp.19-28.
[26] Lanzoni, S., Gregoretti, C. and Stancanelli, L.M. (2017), “Coarse-grained debris flow dynamics on erodible beds”, Journal of Geophysical Research: Earth Surface, Vol.122, pp.592-614.
[27] McCoy, S. W., Kean, J. W, Tucker, G. E., Staley, D. M., and Coe, J. A. (2013), “Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequencyr”, Journal of Geophysical Research: Earth Surface, Vol.118, pp.2190-2207.
[28] McArdell, B. (2016), “Field Measurements of Forces in Debris Flows at the Illgraben: Implications for Channel-Bed Erosion”, International Journal of Erosion Control Engineering, Vol. 9, No. 4, pp. 194-198.
[29] McArdell, B., Scheidl, C. and Rickenmann, D. (2015) , “Debris-flow velocities and superelevation in a curved laboratory channel”, Can. Geotech. J., Vol. 52, pp. 305-317.
[30] McClung, D. M. (2001), “Superelevation of flowing avalanches around curved channel bends”, Jourmnal of Geophysical Research, Vol.106, pp.16489-16498.
[31] Navratil, O., Liébault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G. and Laigle, D. (2013), “High-frequency monitoring of debris-flow propagation along the Real Torrent, Southern French Prealps”, Geomorphology, Vol.201, pp.157-171.
[32] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
[33] Prochaska, A. B., Santi, P. M., Higgins, J. D. and Cannon, S. H. (2008), “A study of methods to estimate debris flow velocity”, Landslides, Vol.5, pp.431–444.
[34] Qian, N. and Wang, Z. Y. (1984), “A preliminary study on the mechanism ofdebris flow”, Acta Geographica Sinica, Vol.39, pp.33-43.
[35] Pastorello, R., D'Agostino, V., Hürlimann, M.(2020) “Debris flow triggering characterization through a comparative analysis among different mountain catchments”, Catena, Vol.186.
[36] Rickenmann, D. and Zimmermann, M. (1993), “The 1987 debris flows in Switzerland: documentation and analysis”, Geomorphology, Vol.8, pp.175-189.
[37] Rickenmann, D. and Koch, T. (1997), “Comparison of debris flow modelling approaches”, Proceedings of the first international conference. ASCE, New York, pp.576–585.
[38] Scheidl, C. McArdell, B.W. and Rickenmann, D. (2014), “Debris-flow velocities and superelevation in a curved laboratory channel”, Canadian Geotechnical Journal, Vol.52, pp.1–13.
[39] de Haas, T. and van Woerkom, T. (2016), “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surf. Process. Landforms, Vol.41, pp.1951-1966.
[40] Takahashi, T. (2009), “A Review of Japanese Debris Flow Research”, International Journal of Erosion Control Engineering, Vol.2, No.1.pp1-14.
[41] Takahashi, T. (1981), “Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster”, J. Natural Disaster Science, Vol.3, pp.57–89.
[42] Takahashi, T. (1978), “Mechanical characteristics of debris flow. J. Hydraulics Div”, ASCE, Vol.104, pp.1153–1169.
[43] Tani, I. (1968), “On debris flow (Yamatsunami)”, Water Science, Vol. 60, pp.106–126.
[44] VanDine, D.F. (1985), “Debris flow and debris torrents in the Southern Canadian Cordillera”, Canadian Geotechnical Journal, Vol.22, pp.44–68.
[45] Viel, V., Fort, M., Lissak, C., Graff, K., Carlier, B., Arnaud, F. G., Cossart, E. and Madelin, A. (2018), “Debris-flow functioning and their contribution to sedimentary budgets: the Peynin subcatchment of the Guil River”, Landform Analysis, Vol.36, pp.71-84.
[46] Zanuttigh, B. and Lamberti, A. (2007), “Instability and surge development in debris flows”, Reviews of Geophysics, Vol.45, pp.1-45.