| 研究生: |
李孟泓 Li-Meng Hong |
|---|---|
| 論文名稱: |
應用於紫外光二極體的氮化物二維電洞氣 Nitride-based two dimensional hole gas for UV LED applications |
| 指導教授: | 賴昆佑 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 二維電洞氣 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深紫外發光二極體(波長≤290 nm)在目前的設計中通常選用P型結構來提高導電性。然而,P型結構中鎂離子的摻雜會形成中間能階(位於價電帶邊界上方約 150~220 meV ),此能階會吸收量子井中載子複合後所產生的紫外光,降低元件的發光效率。因此,我們致力於開發一種以未摻雜的GaN和高品質的AlN結構形成的二維電洞氣(2-dimensional hole gas, 2DHG)來實現高導電、高穿透的性能。利用二維電洞氣,我們能解決使用P型結構中摻雜鎂離子所引起的吸光問題。同時,由於二維電洞氣之磊晶層的厚度相對傳統P型結構更薄,更能減緩P型磊晶層的吸光問題,達成高紫外光穿透的目標。
在本研究中,我們利用一維 drift-diffusion charge control solver (1D DDCC) 軟體進行能帶模擬。從模擬結果中觀察到,在15 nm的GaN磊晶覆蓋層厚度下,AlGaN量子井表面的電洞濃度可達最大值9.7×1020 cm-3。本研究使用有機金屬化學氣相沉積法成長GaN/AlN磊晶層,希望得到高品質的二維電洞氣。我們以兩吋c-plane藍寶石為基板,先成長一層AlN,再成長GaN。透過磊晶時間來調整GaN磊晶層的厚度,並分析不同厚度的GaN對於磊晶品質和元件電性的影響。未來,我們將持續優化二維電洞氣的磊晶條件,以提高磊晶品質,並將其應用於DUV LED結構,以提升發光效率。
Deep ultraviolet light-emitting diodes (DUV LEDs, wavelength ≤ 290 nm) typically utilize a p-type contact layer to control the current spreading and light extraction efficiency. However, doping with magnesium acceptors in the p-type layer creates impurity levels (150~220 meV above the valence band), which absorb the ultraviolet light generated by carrier recombination in the quantum well. Therefore, we are devoted to developing a two-dimensional hole gas (2DHG) formed by undoped GaN and high-quality AlN structures to achieve high conductivity and high transparency. Using the 2DHG, we can overcome the light absorption issues caused by impurity levels. Additionally, the thin (< 30 nm) epitaxial layer of 2DHG can minimize the UV absorption.
In this study, we conducted simulations using a one-dimensional drift-diffusion charge control (DDCC) solver. From the simulation results, it was observed that the hole concentration reached a maximum value of 9.7×1020 cm-3 at the GaN capping layer thickness of 15 nm on the AlGaN quantum wells. To grow high-quality 2DHG, we employed metal-organic chemical vapor deposition (MOCVD) and 2-inch c-plane sapphire substrates. We aim to form the 2DHG by the interface of GaN/AlN. The epitaxial thickness of GaN was controlled by adjusting the growth time, and the effect of GaN layer thicknesses on epitaxial quality and device electrical properties was investigated.
[1] Kirsten Pisto, Ultra awesome: Ultraviolet eyesight in animals, Woodland park Zoo blog, 2012
[2] M. Kneissl, J. Rass, A brief review of III – Nitrides UV emitter Technologies and their applications, III – Nitride Ultraviolet Emitters, Springer series in Materials Science 227, Springer International Publishing, Switzerland, 2016.
[3] Narita, T.et al. “Progress on and challenges of p-type formation for GaN power devices,” J. Appl. Phys. 128, 2020.
[4] Liu, H.et al. “Non-uniform Mg distribution in GaN epilayers grown on mesa structures for applications in GaN power electronics,” Appl. Phys. Lett. 114, 2019.
[5] O, Ambacher.et al. “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[6] Chaudhuri, R.et al. “A polarization-induced 2D hole gas in undoped gallium nitride quantum wells, ” Science, 365(6460), 1454–1457, 2019.
[7] J.Epp,“X-ray diffraction (XRD) techniques for materials characterization,”Materials Characterization Using Nondestruction Evaluation (NDE) Methods, pp.81-124, 2016.
[8] P. Gay, P. B. Hirsch, and A. Kelly, “The Estimation of Dislocation Densities in Metals From X-Ray Data, ” Acta Metallurgica, Volume 1, Issue 3, pp. 315-319, 1953.
[9] C. G Dunn, and E.F Kogh, “Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe, ” Acta Metallurgica, Volume 5, Issue 10, pp. 548-554 ,1957.
[10] M A Moram and ME Vickers, “X-ray diffraction of IlI-nitrides, ” Rep. Prog.Phys., 72, 2009.
[11] Yoshihiko Muramoto, et al. “Development and future of ultraviolet light – emitting diodes: UV – LED will replace the UV lamp,” Semicond. Sci Technol. 29, 2014.
[12] Rietveld, G.et al. “DC conductivity measurements in the Van Der Pauw geometry,” IEEE Trans Instrum Meas. 52, 447~452 , 2003.
[13] Chun-Pin Huang1.et al.“High-quality AlN grown with a single substrate temperature below 1200 °C,” 2017.
[14] S. K. Patra et al., “Determination of threading dislocation density in GaN-on-sapphire by AFM and HRXRD, ” CSIR-Network of Institutes for Solar Energy.
[15] Brochen, S.et al. “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 2013.
[16] Morita, D.et al. “Watt-Class High-Output-Power 365 nm Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 43, 5945~5950 , 2004.
[17] Kneissl, M.et al. “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nature Photon. 13, 233~244, 2019.
[18] Kuo, S.et al. “Improvement of Light Extraction in Deep Ultraviolet GaN Light Emitting Diodes with Mesh P-Contacts,” Appl. Sci. 10, 2020.
[19] Wu, D.et al. “Enhanced Output Power of Near-Ultraviolet InGaN–GaN LEDs Grown on Patterned Sapphire Substrates,” IEEE Photon. Technol. Lett. 17, 288~290, 2005.
[20] Wuu, D.et al. “GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques,” Jpn. J. Appl. Phys. 43, 2004.
[21] Kim, J.et al. “Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having Ni Zn/Ag microcontacts,” Appl. Phys. Lett. 89, 2006.