跳到主要內容

簡易檢索 / 詳目顯示

研究生: 畢芮德
Radha Krishna Pillutla
論文名稱: 台灣西南外海獨立盆地中均質岩及其他事件層研究:岩相分析與事件重現期
A Study on Homogenites and Other Event Beds from Perched Basins Offshore Southwestern Taiwan: Lithofacies Analysis and Recurrence Interval Reconstruction
指導教授: 林殿順
Dr.Andrew Tien-Shun Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 國際研究生博士學位學程
Taiwan international graduate program - Earth system science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 183
中文關鍵詞: 均質岩事件層立盆地中岩相(14C)定年
外文關鍵詞: Homogenites, Event beds, Perched Basins, Lithofacies, 14C Dating
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西南海域有許多獨立盆地,為研究事件層理想場域。本研究分析從獨立盆地取得之三站沉積物岩芯,包含MD18-3547(35.27公尺長)、MD18-3548(20.08公尺長)和 MD18-3552(45.98公尺長),以研究極端事件之沉積物。對這些岩芯進行了高解析度粒徑分析(1公分採樣間隔)、加速器質譜 (AMS) 放射性碳十四定年 (14C) 和電腦斷層(X- CT)掃描,詳細描繪岩相並計算事件層的沉積年代。
    本研究確定了四種不同岩相:半遠洋沉積物、粉砂質濁流岩-均質岩、濁流岩和薄層粉砂質沉積層。這是在台灣西南海域首次發現均質岩,與先前研究在其他地區之均質岩有顯著差異。我們將這新岩相命名為:粉砂質濁流岩-均質岩。所有粉砂質濁流岩-均質岩之下方有一層薄層(通常厚度小於10厘米)顆粒向上變粗再向上變細的層序(粉砂質濁流岩),頂部是一層厚層、無構造泥層,且無生物擾動(均質岩)。
    本研究從浮游性有孔蟲中獲取47個AMS放射性碳(14C)定年。事件層沉積年代為根據半遠洋沉積速率進行內插而得,最近一次事件可追溯自~70 cal BP,最古老事件可追溯自~23.5 cal kyr BP。所有放射性碳十四定年結果以 MARINE20 曲線進行校準,對於年齡小於 5,500 年之沉積物,應用局部儲集層校正ΔR = -154 ± 59。均質岩平均厚度約為100公分,最厚約為225公分,最薄約為40公分。濁流岩的平均厚度約為 4-5公分,最厚記錄約為 16 公分,最薄記錄約為 1 公分。
    大地震被認為是均質岩沉積之主要驅動因素,本研究區域在 2006 年恆春地震 (Mw 7.0) 後,並沒有發現均質岩沉積現象。在台灣西南海域,大型破壞性地震可能與分歧斷層與板塊交界斷層錯動層有關。
    在分析之岩芯共識別 71 個事件層,包括 21 個粉砂質濁流岩-均質岩、24 個濁流岩和 26 個薄層粉砂質沉積層。為了評估重現期,事件層被分為兩類:第1類,包括所有事件層;第2類,僅考慮粉砂質濁流岩-均質岩來估計較大規模地震的重現期。這兩類別都顯示三次沉積間歇期,期持續時間約為1,100至1,400年。
    在第1類中,識別出三個主要的重現期與兩個離群值。排除離群值後,粉砂質濁流岩-均質岩的重現區間約為180至1,400年,而濁流岩與薄層粉砂質沉積層的重現區間則約為110至500年。在三支岩芯中,所有事件層平均重現期約為534年。
    在第2類中,識別出三個重現期群組:第1組平均重現期約為1,000至1,300年,第2組約為180至1,300年,第3組約為900至1,400年。粉砂質濁流岩-均質岩之間的時間間隔主要被濁流岩及薄層粉砂質沉積層所填充,這些層位可能對應較小規模地震事件。在三支岩芯中,粉砂質濁流岩-均質岩的平均重現期約為864年。
    透過針對所有事件層(包含粉砂質濁流岩-均質岩、濁流岩與薄層粉砂質沉積層)以及專門針對粉砂質濁流岩-均質岩(代表較大規模地震)分別進行重現期分析,本研究提供對地震重現模式更為全面之理解。此一方法有助於提升未來地震災害潛勢之評估能力。


    Offshore southwestern Taiwan, with its numerous perched basins, provides an ideal setting for the study of event beds. Three giant piston cores—MD18-3547 (35.27 m), MD18-3548 (20.08 m), and MD18-3552 (45.98 m)—were retrieved from perched basins in this region to investigate extreme event deposits. High-resolution grain-size analysis (1 cm sampling interval), accelerator mass spectrometry (AMS) radiocarbon dating (14C), and X-CT (Computed Tomography) scanning were conducted on these cores, allowing for detailed lithofacies delineation and calculation of emplacement ages for the event beds.
    Four distinct lithofacies were identified: hemipelagic sediments, silty turbidite-homogenites, turbidites, and thin silty layers. Homogenites were documented for the first time in offshore southwestern Taiwan, exhibiting significant differences from previously reported homogenites in other regions. These distinctions led to the introduction of a new facies designation: the silty turbidite-homogenite unit. All silty turbidite-homogenite units are underlain by a thin (typically <10 cm thick) coarsening-upward followed by fining-upward sequence (silty turbidite unit) and capped by a thick, structureless mud layer largely devoid of bioturbation (homogenite unit).
    A total of forty-seven AMS radiocarbon (14C) dates were obtained from planktonic foraminifera. The depositional ages of the event beds were interpolated based on hemipelagic sedimentation rates, with the most recent event dated to ~70 cal BP and the oldest to ~23.5 cal kyr BP. All radiocarbon dates were calibrated using the MARINE20 curve, applying a local reservoir correction of ΔR = -154 ± 59 for sediments younger than 5,500 years. The average thickness of homogenite units is ~100 cm, with the thickest recorded at ~225 cm and the thinnest at ~40 cm. Conversely, turbidites exhibit an average thickness of approximately 4-5 cm, with the thickest recorded at ~16 cm and the thinnest at ~1 cm.
    Large earthquakes are considered the primary drivers of homogenite deposition, as evidenced by the absence of homogenites following the 2006 Hengchun doublet earthquake (Mw 7.0) at our study site. In offshore southwestern Taiwan, large destructive earthquakes are likely associated with either splay faults or out-of-sequence thrust faults.
    A total of seventy-one event beds were identified within the analyzed cores, comprising twenty-one silty turbidite-homogenites, twenty-four turbidites, and twenty-six thin silty layers. To assess recurrence intervals, the event beds were classified into two categories: Category 1, which includes all event beds, and Category 2, which considers only silty turbidite-homogenites to estimate recurrence intervals of larger earthquakes. Both categories exhibit three hiatuses, with durations ranging from approximately 1,100 to 1,400 years.
    Within Category 1, three major recurrence periods and two outliers were identified. Excluding the outliers, the recurrence interval for silty turbidite-homogenites ranges from ~180 to 1,400 years, while turbidites and thin silty layers have recurrence intervals of ~110 to 500 years. Across all three cores, the average recurrence interval for all event beds is approximately 534 years.
    For Category 2, three recurrence clusters were identified: Cluster 1 with an average interval of ~1,000–1,300 years, Cluster 2 with ~180–1,300 years, and Cluster 3 with ~900–1,400 years. The intervals between successive silty turbidite-homogenites are predominantly occupied by turbidites and thin silty layers, which likely correspond to smaller-magnitude events. Across all three cores, the average recurrence intervals for silty turbidite-homogenites within the cluster is approximately 864 years.
    By delineating recurrence intervals for all event beds (silty turbidite-homogenites, turbidites, and thin silty layers) and separately for silty turbidite-homogenites (larger earthquakes), this study provides a more comprehensive understanding of earthquake recurrence patterns. Such an approach may facilitate improved assessments of future seismic hazard potential.

    Authorization of the Electronic Thesis…………………………………………i Recommendation Letter from the Thesis Advisor……………………..ii Verification Letter from the Oral Examination Committee…………iii Acknowledgements………………………………………………………………...iv 摘要…………………………………………………………………………………v Abstract……………………………………………………………………………vii Table of Contents……………………………………………………………………x List of Figures………………………………………………………………….…xiii List of Tables…………………………………………………………………….xviii Preface……………………………………………………………………………..xx Chapter 1: INTRODUCTION……………………………………………...1 1.1. Research motivation and objectives…………………………………...1 1.2. Regional geology of the study area…………………………………….4 1.3. Dissertation structure……………………………………………….....6 Chapter 2: LITHOFACIES ANALYSIS AND CHIRP DATA…………..17 2.1. Introduction and background………………………………………...17 2.2. Core sampling and methods………………………………………….19 2.2.1. Core acquisition……………………………………………….19 2.2.2. Sediment sampling and analytical techniques…………21 2.3. Results and Discussion……………………………………………….23 2.3.1. Hemipelagic sediments………………………………………..23 2.3.2. Silty turbidite-homogenite units………………………………25 2.3.3. Turbidites……………………………………………………...28 2.3.4. Thin silty layers………………………………………………..30 2.3.5. Mixed facies…………………………………………………..31 Chapter 3: RADIOCARBON (14C) DATING…………………………….64 3.1. Introduction and background………………………………………...64 3.2. Sampling and methods……………………………………………….66 3.2.1. Sampling strategy……………………………………………..66 3.2.2. Sample processing…………………………………………….67 3.3. Calibration of 14C raw data…………………………………………...68 3.4. Results and Discussion……………………………………………….69 3.4.1. MD18-3547…………………………………………………...69 3.4.2. MD18-3548…………………………………………………...70 3.4.3. MD18-3552…………………………………………………...71 3.4.4. Summary of 14C dating from MD18-3547, MD18-3548, and MD18-3552…………………………………………………...71 3.4.5. Dating of the silty turbidite-homogenite unit from reworked material………………………………………………………..73 Chapter 4: DEPOSITION OF SILTY TURBIDITE-HOMOGENITE EVENT BEDS…………………………………………………………...…93 4.1. Introduction and background………………………………………...93 4.2. Silty turbidite-homogenite deposition model…………………...96 4.2.1 Stage 1A and 1B- Remobilization and silty turbidite layer deposition stage……………………………………………….96 4.2.2 Stage 2- Homogenite deposition stage: a few weeks to a few months………………………………………………………...98 4.2.3 Stage 3-Hemipelagic sediments deposition stage: a few hundred to a few thousand years………………………………………..99 4.2.4 Stoke’s law……………………………………………………99 4.3. Comparison with other potential flows………………………….…..100 4.4. Comparison of homogenites from other regions of the world.........101 4.5. Homogenite problem in MD18-3547……………………………….105 Chapter 5: RECURRENCE INTERVAL OF EVENT BEDS………..…110 5.1. Introduction and background….…………………………………....110 5.2. Determination of recurrence intervals for MD18-3547, MD18-3548, and MD18-3552…………………………………………………….112 Chapter 6: SUMMARY AND PROSPECTS……………..……………..123 LIST OF PUBLICATIONS……………………………………………...126 BIBLIOGRAPHY………………………………………………………..127 APPENDIX A…………………………………………………………….142

    Ashi, J., Ikehara, K., Kinoshita, M. (2012). Settling of earthquake-induced turbidity on the accretionary prism slope of the central Nankai subduction zone. In Submarine Mass Movements and Their Consequences (pp. 561–571). Springer Netherlands. https://doi.org/10.1007/978-94-007-2162-3_50.
    Ashi, J., Sawada, R., Omura, A., Ikehara, K. (2014). Accumulation of an earthquake-induced extremely turbid layer in a terminal basin of the Nankai accretionary prism. Earth, Planets and Space 66(1), 51. https://doi.org/10.1186/1880-5981-66-51.
    Baba, T., Tanioka, Y., Cummins, P. R., Uhira, K. (2002). The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Physics of the Earth and Planetary Interiors 132(1–3), 59–73. https://doi.org/10.1016/S0031-9201(02)00044-4.
    Babonneau, N., Ratzov, G., Guerin, C., Richa, M., Lallemand, S., Condomines, M., Bachelery, P., Bosch, D., Hsu, S.-K., Su, C.-C., Shinjo, R., Lin, A. T.-S., Bassetti, M.-A., Revel, M., Cattaneo, A., and the EAGER scientific team. (2025). Sedimentary record of deep submarine gravity-flow events in the southern Ryukyu forearc during the last 200,000 years: archive of mega-earthquakes and tsunamis. Submitted to Sedimentology (under revision).
    Beck, C. (2009). Late Quaternary lacustrine paleo-seismic archives in north-western Alps: Examples of earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews 96, 327-344. https://doi.org/10.1016/j.earscirev.2009.07.005.
    Beck, C., Mercier de Lépinay, B., Schneider, J.-L., Cremer, M., Çağatay, N., Wendenbaum, E., Boutareaud, S., Ménot, G., Schmidt, S., Weber, O., Eris, K., Armijo, R., Meyer, B., Pondard, N., Gutscher, M.-A., Turon, J.-L., Labeyrie, L., Cortijo, E., Gallet, Y., Jaouen, A. (2007). Late Quaternary co-seismic sedimentation in the Sea of Marmara’s deep basins. Sedimentary Geology 199(1–2), 65-89. https://doi.org/10.1016/j.sedgeo.2005.12.031.
    Beck, C., Reyss, J.-L., Leclerc, F., Moreno, E., Feuillet, N., Barrier, L., Beauducel, F., Boudon, G., Clément, V., Deplus, C., Gallou, N., Lebrun, J.-F., Le Friant, A., Nercessian, A., Paterne, M., Pichot, T., Vidal, C. (2012). Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard. Natural Hazards and Earth System Sciences 12(5), 1755–1767. https://doi.org/10.5194/nhess-12-1755-2012.
    Bellon, H., P. Yumul Jr, G. (2000). Mio-Pliocene magmatism in the Baguio mining district (Luzon, Philippines): age clues to its geodynamic setting. Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science 331(4), 295–302. https://doi.org/10.1016/S1251-8050(00)01415-4.
    Bernhardt, A., Melnick, D., Hebbeln, D., Lückge, A., Strecker, M. R. (2015). Turbidite paleoseismology along the active continental margin of Chile – Feasible or not? Quaternary Science Reviews 120, 71–92. https://doi.org/10.1016/j.quascirev.2015.04.001.
    Bertrand, S., Charlet, F., Chapron, E., Fagel, N., de Batist, M. (2008). Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S. Palaeogeography, Palaeoclimatology, Palaeoecology 259(2–3), 301–322. https://doi.org/10.1016/j.palaeo.2007.10.013.
    Bilek, S. L., Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere 14(4), 1468–1500. https://doi.org/10.1130/GES01608.1.
    Blott, S. J., Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26(11), 1237–1248. https://doi.org/10.1002/esp.261.
    Bouma, A.H. (1962) Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.
    Bourke, P., Hua, Q. (2009). Examining late Holocene marine reservoir effect in archaeological fauna at Hope Inlet, Beagle Gulf, North Australia. New Directions in Archaeological Science. Australian National University E Press, Australia, 262 pp.
    Broecker, W. S., Peteet, D. M., Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315(6014), 21–26. https://doi.org/10.1038/315021a0.
    Çağatay, M. N., Erel, L., Bellucci, L. G., Polonia, A., Gasperini, L., Eriş, K. K., Sancar, Ü., Biltekin, D., Uçarkuş, G., Ülgen, U. B., Damcı, E. (2012). Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey. Sedimentary Geology 282, 347–359. https://doi.org/10.1016/j.sedgeo.2012.10.001.
    Campos, C., Beck, C., Crouzet, C., Demory, F., van Welden, A., Eris, K. (2013). Deciphering hemipelagites from homogenites through anisotropy of magnetic susceptibility. Paleoseismic implications (Sea of Marmara and Gulf of Corinth). Sedimentary Geology 292, 1–14. https://doi.org/10.1016/j.sedgeo.2013.03.015.
    Carrillo, E., Beck, C., Audemard, F. A., Moreno, E., Ollarves, R. (2008). Disentangling Late Quaternary climatic and seismo-tectonic controls on Lake Mucubají sedimentation (Mérida Andes, Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 259(2–3), 284–300. https://doi.org/10.1016/j.palaeo.2007.10.012.
    Cattaneo, A., Badhani, S., Caradonna, C., Bellucci, M., Leroux, E., Babonneau, N., Garziglia, S., Poort, J., Akhmanov, G. G., Bayon, G., Dennielou, B., Jouet, G., Migeon, S., Rabineau, M., Droz, L., Clare, M. (2020). The Last Glacial Maximum Balearic Abyssal Plain megabed revisited. Geological Society, London, Special Publications 500(1), 341–357. https://doi.org/10.1144/SP500-2019-188.
    Chapron, E., Beck, C., Pourchet, M., Deconinck, J. (1999). 1822 earthquake‐triggered homogenite in Lake Le Bourget (NW Alps). Terra Nova 11(2–3), 86–92. https://doi.org/10.1046/j.1365-3121.1999.00230.x.
    Chen, K.-T., Hsu, S.-K., Lin, A. T.-S., Su, C.-C., Babonneau, N., Ratzov, G., Lallemand, S., Huang, P.-C., Lin, L.-K., Lin, H.-S., Tsai, C.-H., Lin, J.-Y., Chen, S.-C. (2024). Changes in marine sedimentation patterns in the northeastern South China Sea in the past 35,000 years. Communications Earth & Environment 5(1), 420. https://doi.org/10.1038/s43247-024-01593-3.
    Chen, P.-F., Newman, A. v., Wu, T.-R., Lin, C.-C. (2008). Earthquake probabilities and energy characteristics of seismicity offshore Southwest Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 19(6), 697. https://doi.org/10.3319/TAO.2008.19.6.697(PT).
    Chen, R.-F., Chang, K.-J., Angelier, J., Chan, Y.-C., Deffontaines, B., Lee, C.-T., Lin, M.-L. (2006). Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake. Engineering Geology 88(3–4), 160–172. https://doi.org/10.1016/j.enggeo.2006.09.008.
    Cheng, S.N., Yeh, Y.T., (1989). Catalog of the Earthquakes in Taiwan from 1604 to 1988. Institute of Earth Sciences, Academia Sinica, Taipei, 255pp (in Chinese).
    Chuang, P.-C., Dale, A. W., Wallmann, K., Haeckel, M., Yang, T. F., Chen, N.-C., Chen, H.-C., Chen, H.-W., Lin, S., Sun, C.-H., You, C.-F., Horng, C.-S., Wang, Y., Chung, S.-H. (2013). Relating sulfate and methane dynamics to geology: Accretionary prism offshore SW Taiwan. Geochemisty, Geophysics, Geosystems 14, 2523– 2545. https://doi.org/10.1002/ggge.20168.
    Cita, M. B. (2008). Deep- Sea Homogenites: Sedimentary expression of a prehistoric megatsunami in the eastern Mediterranean. In Tsunamiites (pp. 185–202). Elsevier. https://doi.org/10.1016/B978-0-444-51552-0.00012-6.
    Cita, M. B., Camerlenghi, A., Rimoldi, B. (1996). Deep-sea tsunami deposits in the eastern Mediterranean: New evidence and depositional models. Sedimentary Geology 104(1–4), 155–173. https://doi.org/10.1016/0037-0738(95)00126-3.
    Cita, M. B., Camerlenghi, A., Kastens, K. A., McCoy, F. W. (1984). New findings of Bronze Age homogenites in the Ionian Sea: Geodynamic implications for the Mediterranean. Marine Geology 55(1–2), 47–62. https://doi.org/10.1016/0025-3227(84)90132-4.
    Clare, M. A., Talling, P. J., Challenor, P., Malgesini, G., Hunt, J. (2014). Distal turbidites reveal a common distribution for large submarine landslide recurrence. Geology 42(3), 263–266. https://doi.org/10.1130/G35160.1.
    Culleton, B. J. (2006). Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California. Journal of Archaeological Science 33(9), 1331–1339. https://doi.org/10.1016/j.jas.2006.01.013.
    Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., Lin, J.C., (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651. https://doi.org/10.1038/nature02150.
    Dezileau, L., Lehu, R., Lallemand, S., Hsu, S.-K., Babonneau, N., Ratzov, G., Lin, A. T., Dominguez, S. (2016). Historical Reconstruction of Submarine Earthquakes Using 210 Pb, 137 Cs, and 241 Am Turbidite Chronology and Radiocarbon Reservoir Age Estimation off East Taiwan. Radiocarbon 58(1), 25–36. https://doi.org/10.1017/RDC.2015.3
    Druffel, E. R. M., Bauer, J. E., Griffin, S., Beaupré, S. R., Hwang, J. (2008). Dissolved inorganic radiocarbon in the North Pacific Ocean and Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers 55(4), 451–459. https://doi.org/10.1016/j.dsr.2007.12.007.
    Eiríksson, J., Larsen, G., Knudsen, K. L., Heinemeier, J., Símonarson, L. A. (2004). Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23(20–22), 2247–2268. https://doi.org/10.1016/j.quascirev.2004.08.002.
    Folk, R. L., Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.
    Franke, J., Paul, A., Schulz, M. (2008). Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past 4(2), 125–136. https://doi.org/10.5194/cp-4-125-2008.
    Fuller, M., McCabe, R., Williams, I. S., Almasco, J., Encina, R. Y., Zanoria, A. S., Wolfe, J. A. (1983). Paleomagnetism of Luzon. American Geophysical Union Geophysical Monograph 27, 79–94. https://doi.org/10.1029/GM027p0079.
    Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y., Xu, S. (2012). Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology 32(1), 95–109. https://doi.org/10.1016/j.marpetgeo.2011.12.005.
    Guyard, H., St-Onge, G., Chapron, E., Anselmetti, F. S., Francus, P. (2007). The AD 1881 earthquake-triggered slump and late holocene flood-induced turbidites from proglacial lake Bramant, Western French alps. In Submarine Mass Movements and Their Consequences (pp. 279–286). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6512-5_29.
    Hansen, L. A. S., Callow, R. H. T., Kane, I. A., Gamberi, F., Rovere, M., Cronin, B. T., Kneller, B. C. (2015). Genesis and character of thin-bedded turbidites associated with submarine channels. Marine and Petroleum Geology 67, 852–879. https://doi.org/10.1016/j.marpetgeo.2015.06.007.
    Haughton, P., Davis, C., McCaffrey, W., Barker, S. (2009). Hybrid sediment gravity flow deposits – Classification, origin and significance. Marine and Petroleum Geology, 26(10), 1900–1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012.
    Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., Skinner, L. C. (2020). Marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4), 779-820. https://doi.org/10.1017/RDC.2020.68.
    Hieke, W. (1984). A thick Holocene homogenite from the Ionian Abyssal plain (eastern Mediterranean). Marine Geology 55(1–2), 63–78. https://doi.org/10.1016/0025-3227(84)90133-6.
    Hieke, W., Werner, F. (2000). The Augias megaturbidite in the central Ionian Sea (central Mediterranean) and its relation to the Holocene Santorini event. Sedimentary Geology 135(1–4), 205–218. https://doi.org/10.1016/S0037-0738(00)00072-5.
    Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics 125(1–3), 1–16. https://doi.org/10.1016/0040-1951(86)90004-1.
    Hsu, M.-T. (1980). Earthquake Catalogues in Taiwan (from 1644 to 1979). National Taiwan University, Taipei, 77pp (in Chinese)
    Hsu, Y.-J., Yu, S.-B., Song, T.-R. A., Bacolcol, T. (2012). Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. Journal of Asian Earth Sciences 51, 98–108. https://doi.org/10.1016/j.jseaes.2012.01.005.
    Hsu, Y., Yu, S., Loveless, J. P., Bacolcol, T., Solidum, R., Luis, A., Pelicano, A., Woessner, J. (2016). Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system. Journal of Geophysical Research: Solid Earth 121(10), 7639–7665. https://doi.org/10.1002/2016JB013082.
    Huang, J., Wan, S., Xiong, Z., Zhao, D., Liu, X., Li, A., Li, T. (2016). Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Paleoclimatology, Paleoecology 441, 871–881. https://doi.org/10.1016/j.palaeo.2015.10.036.
    Huang, Y.-S., Hsu, S.-K., Su, C.-C., Lin, A. T.-S., Yu, P.-S., Babonneau, N., Ratzov, G., Lallemand, S., Huang, P.-C., Lin, S.-S., Lin, J.-Y., Wei, K.-Y., Chang, Y.-P., Yu, N.-T., Tsai, C.-H. (2021). Shallow gas hydrates off southwest Taiwan and their mechanisms. Marine Geophysical Research 42(1), 7. https://doi.org/10.1007/s11001-021-09429-x.
    Hutchings, S. J., Mooney, W. D. (2024). Seismotectonics of the Philippine and Taiwan subduction systems and implications for seismic hazards. Geochemistry, Geophysics, Geosystems 25(6). https://doi.org/10.1029/2023GC010990.
    Ichinose, G. A., Thio, H. K., Somerville, P. G., Sato, T., Ishii, T. (2003). Rupture process of the 1944 Tonankai earthquake (M s 8.1) from the inversion of teleseismic and regional seismograms. Journal of Geophysical Research: Solid Earth 108(B10), 1-21. https://doi.org/10.1029/2003JB002393.
    Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., Wefer, G. (2016). Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth and Planetary Science Letters 445, 48–56. https://doi.org/10.1016/j.epsl.2016.04.009.
    Ikehara, K., Usami, K., Kanamatsu, T. (2020). Repeated occurrence of surface-sediment remobilization along the landward slope of the Japan Trench by great earthquakes. Earth, Planets and Space 72(1), 114. https://doi.org/10.1186/s40623-020-01241-y.
    Ikehara, K., Usami, K., Irino, T., Omura, A., Jenkins, R. G., Ashi, J. (2021). Characteristics and distribution of the event deposits induced by the 2011 Tohoku-oki earthquake and tsunami offshore of Sanriku and Sendai, Japan. Sedimentary Geology 411, 105791. https://doi.org/10.1016/j.sedgeo.2020.105791.
    Jones, K. P. N., McCave, I. N., Weaver, P. P. E. (1992). Textural and dispersal patterns of thick mud turbidites from the Madeira Abyssal plain. Marine Geology 107(3), 149–173. https://doi.org/10.1016/0025-3227(92)90165-E.
    Kanamatsu, T., Ikehara, K., Hsiung, K.-H. (2023). Submarine paleoseismology in the Japan Trench of northeastern Japan: turbidite stratigraphy and sedimentology using paleomagnetic and rock magnetic analyses. Progress in Earth and Planetary Science 10(1), 16. https://doi.org/10.1186/s40645-023-00545-3.
    Kao, H. (1998). Can Great Earthquakes Occur in the Southernmost Ryukyu Arc-Taiwan Region? Terrestrial, Atmospheric and Oceanic Sciences 9(3), 487. https://doi.org/10.3319/TAO.1998.9.3.487(TAICRUST)
    Kastens, K. A. (1984). Earthquakes as a triggering mechanism for debris flows and turbidites on the Calabrian Ridge. Marine Geology 55(1–2), 13–33. https://doi.org/10.1016/0025-3227(84)90130-0.
    Kastens, K. A., Cita, M. B. (1981). Tsunami-induced sediment transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin 92(11), 845-857. https://doi.org/10.1130/0016-7606(1981)92<845:TSTITA>2.0.CO;2.
    Kong, X., Jiang, Z., Han, C., Li, H., Li, Q., Zheng, L., Yang, Y., Zhang, J., Xiao, F. (2019). Sedimentary characteristics and depositional models of two types of homogenites in an Eocene continental lake basin, Shulu Sag, eastern China. Journal of Asian Earth Sciences 179, 165–188. https://doi.org/10.1016/j.jseaes.2019.04.023.
    Krumbein, W.C. (1938). Size frequency distributions of sediments and the normal phi curve. SEPM Journal of Sedimentary Research Vol. 8 (3): 84-90. https://doi.org/10.1306/D4269008-2B26-11D7-8648000102C1865D.
    Lacombe, O., Mouthereau, F., Angelier, J., Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics 333(1–2), 323–345. https://doi.org/10.1016/S0040-1951(00)00281-X.
    Leeder, M. (2011) Sedimentology and Sedimentary Basins: From Turbulence to Tectonics. Wiley-Blackwell, Oxford, 768 pp.
    Lehu, R., Lallemand, S., Ratzov, G., Babonneau, N., Hsu, S.-K., Lin, A. T., Dezileau, L. (2016). An attempt to reconstruct 2700 years of seismicity using deep-sea turbidites offshore eastern Taiwan. Tectonophysics 692, 309–324. https://doi.org/10.1016/j.tecto.2016.04.030.
    Li, C., Shi, X., Kao, S., Chen, M., Liu, Y., Fang, X., Lü, H., Zou, J., Liu, S., Qiao, S. (2012). Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin 57(6), 673–681. https://doi.org/10.1007/s11434-011-4824-1.
    Li, L., Switzer, A. D., Wang, Y., Weiss, R., Qiu, Q., Chan, C.-H., Tapponnier, P. (2015). What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters 42(20), 8498–8506. https://doi.org/10.1002/2015GL065567.
    Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479(1–2), 28–42. https://doi.org/10.1016/j.tecto.2008.11.004.
    Lin, A.T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z, Teng, L.S., Chuang, H.-R., Wu, M.-S. (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology 255, 186–203. https://doi.org/10.1016/j.margeo.2008.10.002.
    Lin, C.-C., Lin, A. T.-S., Liu, C.-S., Horng, C.-S., Chen, G.-Y., Wang, Y. (2014). Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research 35(1), 21–35. https://doi.org/10.1007/s11001-013-9203-7.
    Liu, C.-S., Deffontaines, B., Lu, C.-Y., Lallemand, S. (2004). Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore Southwestern Taiwan. Marine Geophysical Researches 25(1–2), 123–137. https://doi.org/10.1007/s11001-005-0738-0.
    Liu, C.-S., Huang, I. L., Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology 137(3–4), 305–319. https://doi.org/10.1016/S0025-3227(96)00093-x.
    Liu, T.-C., Wu, T.-R., Hsu, S.-K. (2022). Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event. Natural Hazards and Earth System Sciences 22(8), 2517–2530. https://doi.org/10.5194/nhess-22-2517-2022.
    Lowe. (1982). Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. SEPM Journal of Sedimentary Research Vol. 52. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D.
    Lu, C.-H., Yen, J.-Y., Chyi, S.-J., Yu, N.-T., Chen, J.-H. (2019). Geological records of South China Sea tsunamis on Penghu Islands, Taiwan. Journal of Asian Earth Sciences 177. https://doi.org/10.1016/j.jseaes.2019.02.027.
    McHugh, C. M., Kanamatsu, T., Seeber, L., Bopp, R., Cormier, M.-H., Usami, K. (2016). Remobilization of surficial slope sediment triggered by the A.D. 2011 M w 9 Tohoku-Oki earthquake and tsunami along the Japan Trench. Geology 44(5), 391–394. https://doi.org/10.1130/G37650.1.
    McHugh, C. M., Seeber, L., Braudy, N., Cormier, M.-H., Davis, M. B., Diebold, J. B., Dieudonne, N., Douilly, R., Gulick, S. P. S., Hornbach, M. J., Johnson, H. E., Mishkin, K. R., Sorlien, C. C., Steckler, M. S., Symithe, S. J., Templeton, J. (2011). Offshore sedimentary effects of the 12 January 2010 Haiti earthquake. Geology 39(8), 723–726. https://doi.org/10.1130/G31815.1.
    McHugh, C. M., Seeber, L., Rasbury, T., Strasser, M., Kioka, A., Kanamatsu, T., Ikehara, K., Usami, K. (2020). Isotopic and sedimentary signature of megathrust ruptures along the Japan subduction margin. Marine Geology 428, 106283. https://doi.org/10.1016/j.margeo.2020.106283.
    McHugh, C., Seeber, L., Cormier, M., Dutton, J., Cagatay, N., Polonia, A., Ryan, W., Gorur, N. (2006). Submarine earthquake geology along the North Anatolia Fault in the Marmara Sea, Turkey: A model for transform basin sedimentation. Earth and Planetary Science Letters 248(3–4), 661-684. https://doi.org/10.1016/j.epsl.2006.05.038.
    Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T.-R., Lin, Y., Tan, S. K., Pan, T.-C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. Journal of Asian Earth Sciences 36(1), 13–20. https://doi.org/10.1016/j.jseaes.2008.11.012.
    Middleton, G. V. (1993). Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences 21(1), 89–114. https://doi.org/10.1146/annurev.ea.21.050193.000513.
    Milliman, J. D., Syvitski, J. P. M. (1992). Geomorphic/Tectonic control of sediment discharge to the ocean: The Importance of small mountainous rivers. The Journal of Geology 100(5), 525–544. https://doi.org/10.1086/629606.
    Moernaut, J., van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., Ladrón de Guevara, B., Pino, M., Urrutia, R., de Batist, M. (2017). Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology 384, 159–176. https://doi.org/10.1016/j.margeo.2015.10.009.
    Moernaut, J., van Daele, M., Fontijn, K., Heirman, K., Kempf, P., Pino, M., Valdebenito, G., Urrutia, R., Strasser, M., de Batist, M. (2018). Larger earthquakes recur more periodically: New insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile. Earth and Planetary Science Letters 481, 9–19. https://doi.org/10.1016/j.epsl.2017.10.016.
    Molenaar, A., Moernaut, J., Wiemer, G., Dubois, N., Strasser, M. (2019). Earthquake impact on active margins: Tracing surficial remobilization and seismic strengthening in a slope sedimentary sequence. Geophysical Research Letters 46(11), 6015–6023. https://doi.org/10.1029/2019GL082350.
    Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., Tobin, H. J. (2007). Three-Dimensional splay fault geometry and implications for tsunami generation. Science 318(5853), 1128–1131. https://doi.org/10.1126/science.1147195.
    Moran, S. (2018). Fluid mechanics. In An Applied Guide to Water and Effluent Treatment Plant Design (pp. 53–58). Elsevier. https://doi.org/10.1016/B978-0-12-811309-7.00005-9.
    Mulder, T., Hüneke, H. (2014). Bouma Sequence. In Encyclopedia of Marine Geosciences pp. 1–2. Springer Netherlands. https://doi.org/10.1007/978-94-007-6644-0_135-1.
    Mulder, T., Migeon. S., Savoye, B., Faugeres, J.-C. (2001). Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Marine Letters 21(2), 86–93. https://doi.org/10.1007/s003670100071.
    Mulder, T., Syvitski, J. P. M. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology 103(3), 285–299. https://doi.org/10.1086/629747.
    Mulder, T., Zaragosi, S., Razin, P., Grelaud, C., Lanfumey, V., Bavoil, F. (2009). A new conceptual model for the deposition process of homogenite: Application to a cretaceous megaturbidite of the western Pyrenees (Basque region, SW France). Sedimentary Geology 222(3–4), 263–273. https://doi.org/10.1016/j.sedgeo.2009.09.013.
    Mutti, E., 1992, AGIP Italy in E. Mutti, (ed.), Turbidite sandstones: 275 p.
    Mutti, E., Lucchi, F. R., Seguret, M., Zanzucchi, G. (1984). Seismoturbidites: A new group of resedimented deposits. Marine Geology 55(1–2), 103–116. https://doi.org/10.1016/0025-3227(84)90135-X.
    Mutti, E., Tinterri, R., Benevelli, G., Biase, D. di, Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology 20(6–8), 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001.
    Ng, S. M., Angelier, J., Chang, C.-P. (2009). Earthquake cycle in Western Taiwan: Insights from historical seismicity. Geophysical Journal International 178(2), 753–774. https://doi.org/10.1111/j.1365-246X.2009.04164.x.
    Noguchi, T., Tanikawa, W., Hirose, T., Lin, W., Kawagucci, S., Yoshida‐Takashima, Y., Honda, M. C., Takai, K., Kitazato, H., Okamura, K. (2012). Dynamic process of turbidity generation triggered by the 2011 Tohoku‐Oki earthquake. Geochemistry, Geophysics, Geosystems 13(11). https://doi.org/10.1029/2012GC004360.
    Oguri, K., Kawamura, K., Sakaguchi, A., Toyofuku, T., Kasaya, T., Murayama, M., Fujikura, K., Glud, R. N., Kitazato, H. (2013). Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake. Scientific Reports 3(1), 1915. https://doi.org/10.1038/srep01915.
    Okutsu, N., Ashi, J., Yamaguchi, A., Irino, T., Ikehara, K., Kanamatsu, T., Suganuma, Y., Murayama, M. (2019). Evidence for surface sediment remobilization by earthquakes in the Nankai forearc region from sedimentary records. Geological Society, London, Special Publications 477(1), 37–45. https://doi.org/10.1144/SP477.22.
    Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P. R., Kaneda, Y. (2002). Splay fault branching along the Nankai subduction zone. Science 297(5584), 1157-1160. https://doi.org/10.1126/science.1074111.
    Petchey, F., Allen, M. S., Addison, D. J., Anderson, A. (2009). Stability in the South Pacific surface marine 14C reservoir over the last 750years. Evidence from American Samoa, the southern Cook Islands and the Marquesas. Journal of Archaeological Science 36(10), 2234–2243. https://doi.org/10.1016/j.jas.2009.06.008.
    Pillutla, R. K., Lin, A. T.-S., Yeh, J.-C., Ratzov, G., Babonneau, N., Hsu, S.-K., Su, C.-C., Lallemand, S., Löwemark, L. (2025). Origin and deposition of deepwater homogenites from a sedimentological perspective: Examples from offshore SW Taiwan. Sedimentary Geology 106854. https://doi.org/10.1016/j.sedgeo.2025.106854.
    Polonia, A., Bonatti, E., Camerlenghi, A., Lucchi, R. G., Panieri, G., Gasperini, L. (2013). Mediterranean megaturbidite triggered by the AD 365 Crete earthquake and tsunami. Scientific Reports 3(1), 1285. https://doi.org/10.1038/srep01285.
    Polonia, A., Nelson, C. H., Romano, S., Vaiani, S. C., Colizza, E., Gasparotto, G., Gasperini, L. (2017). A depositional model for seismo-turbidites in confined basins based on Ionian Sea deposits. Marine Geology 384, 177–198. https://doi.org/10.1016/j.margeo.2016.05.010.
    Polonia, A., Nelson, C. H., Vaiani, S. C., Colizza, E., Gasparotto, G., Giorgetti, G., Bonetti, C., Gasperini, L. (2022). Recognizing megatsunamis in Mediterranean deep sea sediments based on the massive deposits of the 365 CE Crete event. Scientific Reports 12(1), 5253. https://doi.org/10.1038/s41598-022-09058-3.
    Polonia, A., Vaiani, S. C., de Lange, G. J. (2016). Did the A.D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea? Geology 44(3), 191–194. https://doi.org/10.1130/G37486.1.
    Queano, K. L., Ali, J. R., Milsom, J., Aitchison, J. C., Pubellier, M. (2007). North Luzon and the Philippine sea plate motion model: Insights following paleomagnetic, structural, and age-dating investigations. Journal of Geophysical Research 112(B5), 1-44. https://doi.org/10.1029/2006JB004506.
    Ranken, B., Cardwell, R.K., Karig, D.E. (1984). Kinematics of the Philippine sea plate. Tectonics 35, 555-575. https://doi.org/10.1029/TC003i005p00555.
    Rebesco, M., Vedova, B. D., Cernobori, L., Aloisi, G. (2000). Acoustic facies of Holocene megaturbidites in the Eastern Mediterranean. Sedimentary Geology 135(1–4), 65–74. https://doi.org/10.1016/S0037-0738(00)00063-4.
    Reynolds, P. D. (2002). The scaphopoda. Advances in Marine Biology 42, 137–236. https://doi.org/10.1016/S0065-2881(02)42014-7.
    San Pedro, L., Babonneau, N., Gutscher, M.-A., Cattaneo, A. (2017). Origin and chronology of the augias deposit in the Ionian Sea (Central Mediterranean Sea), based on new regional sedimentological data. Marine Geology 384, 199–213. https://doi.org/10.1016/j.margeo.2016.05.005.
    Schellart, W. P., Rawlinson, N. (2013). Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Physics of the Earth and Planetary Interiors 225, 41–67. https://doi.org/10.1016/j.pepi.2013.10.001.
    Schwestermann, T., Huang, J., Konzett, J., Kioka, A., Wefer, G., Ikehara, K., Moernaut, J., Eglinton, T. I., Strasser, M. (2020). Multivariate Statistical and Multiproxy Constraints on Earthquake‐Triggered Sediment Remobilization Processes in the Central Japan Trench. Geochemistry, Geophysics, Geosystems 21(6). https://doi.org/10.1029/2019GC008861.
    Schwestermann, T., Eglinton, T. I., Haghipour, N., McNichol, A. P., Ikehara, K., Strasser, M. (2021). Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth and Planetary Science Letters 563, 116870. https://doi.org/10.1016/j.epsl.2021.116870.
    Seno, T., Stein, S., Gripp, A.E. (1993). A model for the motion of the Philippine sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth 98 (B10), 17941–17948. https://doi.org/10.1029/93JB00782.
    Shanmugam, G. (1997). The Bouma Sequence and the turbidite mind set. Earth-Science Reviews 42(4), 201–229. https://doi.org/10.1016/S0012-8252(97)81858-2.
    Shyu, J. B. H. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research 110(B8). https://doi.org/10.1029/2004JB003251.
    Shiki, T., Cita, M. B. (2008). Tsunami-related sedimentary properties of Mediterranean homogenites as an example of deep-sea tsunamiite. In Tsunamiites (pp. 203–215). Elsevier. https://doi.org/10.1016/B978-0-444-51552-0.00013-8.
    Shirai, M., Omura, A., Wakabayashi, T., Uchida, J., Ogami, T. (2010). Depositional age and triggering event of turbidites in the western Kumano Trough, central Japan during the last ca. 100 years. Marine Geology 271(3–4), 225–235. https://doi.org/10.1016/j.margeo.2010.02.015.
    Smillie, Z., Stow, D., Esentia, I. (2019). Deep-sea contourites drifts, erosional features and bedforms. In Encyclopedia of Ocean Sciences (pp. 97–110). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11590-8.
    Sparkes, R. B., Lin, I.-T., Hovius, N., Galy, A., Liu, J. T., Xu, X., Yang, R. (2015). Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping river–canyon system. Marine Geology 363, 191–201. https://doi.org/10.1016/j.margeo.2015.02.013.
    Stanley, D. J. (1981). Unifites: structureless muds of gravity-flow origin in Mediterranean basins. Geo-Marine Letters 1(2), 77–83. https://doi.org/10.1007/BF02463322.
    Schuur, E. A. G., Druffel, E., Trumbore, S. E. (Eds.). (2016). Radiocarbon and Climate Change. Springer International Publishing. https://doi.org/10.1007/978-3-319-25643-6.
    Stern, R. J. (2002). Subduction zones. Reviews of Geophysics 40(4). https://doi.org/10.1029/2001RG000108.
    St-Onge, G., Chapron, E., Mulsow, S., Salas, M., Viel, M., Debret, M., Foucher, A., Mulder, T., Winiarski, T., Desmet, M., Costa, P. J. M., Ghaleb, B., Jaouen, A., Locat, J. (2012). Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: Implications for paleoseismicity and sedimentology. Sedimentary Geology 243–244, 89-107. https://doi.org/10.1016/j.sedgeo.2011.11.003.
    Stow, D., Faugères, J.-C., Howe, J. A., Pudsey, C. J., Viana, A. R. (2002). Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art. Geological Society, London, Memoirs 22(1), 7–20. https://doi.org/10.1144/GSL.MEM.2002.022.01.02.
    Stow, D., Smillie, Z. (2020). Distinguishing between deep-water sediment facies: Turbidites, Contourites and Hemipelagites. Geosciences 10(2), 68. https://doi.org/10.3390/geosciences10020068.
    Strasser, M., Ikehara, K., Pizer, C., Itaki, T., Satoguchi, Y., Kioka, A., McHugh, C., Proust, J.-N., Sawyer, D., Everest, J., Maeda, L., Hochmuth, K., Grant, H., Stewart, M., Okutsu, N., Sakurai, N., Yokoyama, T., Bao, R., Bellanova, P., … Zellers, S. D. (2024). Japan Trench event stratigraphy: First results from IODP giant piston coring in a deep-sea trench to advance subduction zone paleoseismology. Marine Geology 477, 107387. https://doi.org/10.1016/j.margeo.2024.107387.
    Stuiver, M., Reimer, P.J. (1993). CALIB rev. 8. Radiocarbon 35, 215-230. https://doi.org/10.1017/S0033822200013904.
    Su, C.-C., Hsu, S.-T., Hsu, H.-H., Lin, J.-Y., Dong, J.-J. (2018). Sedimentological characteristics and seafloor failure offshore SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 29, 65-76. https://doi.org/10.3319/TAO.2017.06.21.01.
    Talling, P. J., Cartigny, M. J. B., Pope, E., Baker, M., Clare, M. A., Heijnen, M., Hage, S., Parsons, D. R., Simmons, S. M., Paull, C. K., Gwiazda, R., Lintern, G., Hughes Clarke, J. E., Xu, J., Silva Jacinto, R., Maier, K. L. (2023). Detailed monitoring reveals the nature of submarine turbidity currents. Nature Reviews Earth & Environment 4(9), 642–658. https://doi.org/10.1038/s43017-023-00458-1.
    Teng, L.S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geologica Taiwanica 25 (1987), pp. 205-224.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183(1–4), 57–76. https://doi.org/10.1016/0040-1951(90)90188-E.
    Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology 24(10), 949. https://doi.org/10.1130/0091-7613(1996)024<0949:ECOTNT>2.3.CO;2.
    Terry, J. P., Winspear, N., Goff, J., Tan, P. H. H. (2017). Past and potential tsunami sources in the South China Sea: A brief synthesis. Earth-Science Reviews 167, 47–61. https://doi.org/10.1016/j.earscirev.2017.02.007.
    Tripsanas, E. K., Bryant, W. R., Phaneuf, B. A. (2004). Depositional processes of uniform mud deposits (unifites), Hedberg Basin, northwest Gulf of Mexico: New perspectives. AAPG Bulletin 88(6), 825–840. https://doi.org/10.1306/01260403104.
    Usami, K., Ikehara, K., Kanamatsu, T., McHugh, C. M. (2018). Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years. Geoscience Letters 5(1), 11. https://doi.org/10.1186/s40562-018-0110-2.
    Wang, F., Zhang, Z.-Q., 2005. Earthquake tsunami record in Chinese ancient books. Chin. Earthquakes 21 (3), p. 09.
    Wetzel, A., Werner, F., Stow, D. (2008). Bioturbation and Biogenic Sedimentary Structures in Contourites. In Contourites (pp. 183–202). Developments in Sedimentology. https://doi.org/10.1016/S0070-4571(08)10011-5.
    Wetzel, A., Unverricht, D. (2013). A muddy megaturbidite in the deep central South China Sea deposited ~350yrsBP. Marine Geology 346, 91–100. https://doi.org/10.1016/j.margeo.2013.08.010.
    Wirth, E. A., Sahakian, V. J., Wallace, L. M., Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment 3(2), 125–140. https://doi.org/10.1038/s43017-021-00245-w.
    Wu, Y.-M. (2006). Seismic Quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 Earthquake. Bulletin of the Seismological Society of America 96(1), 321–327. https://doi.org/10.1785/0120050069.
    Wu, Y.-M., Chen, C.-C., Zhao, L., Chang, C.-H. (2008). Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake. Tectonophysics 457(3–4), 177–182. https://doi.org/10.1016/j.tecto.2008.06.007.
    Yakupoğlu, N., Henry, P., Uçarkuş, G., Eriş, K. K., Demory, F., Crouzet, C., Çağatay, M. N. (2022). Factors affecting thickness and frequency of turbidites triggered by earthquakes in Kumburgaz Basin, Sea of Marmara. Marine Geology 452, 106900. https://doi.org/10.1016/j.margeo.2022.106900.
    Yang, R.J., Wang, S.-L., Burr, G.S., Liu, J.T., Fan, D. (2019). Holocene variation of radiocarbon reservoir age offshore western Taiwan, derived from paired charcoals and mollusks. Quaternary International 527, 79–86. https://doi.org/10.1016/j.quaint.2018.07.001.
    Yu, K., Hua, Q., Zhao, J., Hodge, E., Fink, D., Barbetti, M. (2010). Holocene marine 14 C reservoir age variability: Evidence from 230 Th-dated corals in the South China Sea. Paleoceanography 25(3), 1-15. https://doi.org/10.1029/2009PA001831.
    Yu, N.-T., Lu, C.-H., Yen, I.-C., Chen, J.-H., Yen, J.-Y., Chyi, S.-J. (2023). Boulder transport and wave height of a seventeenth century South China Sea tsunami on Penghu Islands, Taiwan. Natural Hazards Earth System Sciences 23, 3525-3542. https://doi.org/10.5194/nhess-23-3525-2023.
    Yu, N.-T., Yen, J.-Y., Chen, W.-S., Yen, I.-C., Liu, J.-H. (2016). Geological records of western Pacific tsunamis in northern Taiwan: AD 1867 and earlier event deposits. Marine Geology 372, 1–16. https://doi.org/10.1016/j.margeo.2015.11.010.
    Yu, N.-T., Yen, J.-Y., Yen, I.-C., Hirakawa, K., Chuang, C.-M. (2020). Tsunami deposits and recurrence on a typhoon-prone coast of northern Taiwan from the last millennium. Quaternary Science Reviews 245, 106488. https://doi.org/10.1016/j.quascirev.2020.106488.
    Yu, N.-T., Yen, J.-Y., Chyi, S.-J., Lu, C.-H., Matsuta, N. M., Yen, I.-C. (2025). Recent progress in tsunami deposit investigations in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 36(1), 1. https://doi.org/10.1007/s44195-024-00084-4.
    Yu, S.-B., Kuo, L.-C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics 333, 199-217. https://doi.org/10.1016/S0040-1951(00)00275-4.
    Yu, S.-B., Kuo, L.-C., Punongbayan, R.S., Ramos, E.G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophysical Research Letters 26, 923-926. https://doi.org/10.1029/1999GL900148.
    Yu, S.-W., Tsai, L. L., Talling, P. J., Lin, A. T., Mii, H.-S., Chung, S.-H., Horng, C.-S. (2017). Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan. Marine Geology 392, 140–150. https://doi.org/10.1016/j.margeo.2017.08.011.
    Yumul, G. P., Dimalanta, C. B., Tamayo, R. A., Maury, R. C. (2003). Collision, subduction and accretion events in the Philippines: A synthesis. Island Arc 12(2), 77–91. https://doi.org/10.1046/j.1440-1738.2003.00382.x.
    Zhao, G., Niu, X. (2024). Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone. Natural Hazards and Earth System Sciences 24(7), 2303–2313. https://doi.org/10.5194/nhess-24-2303-2024.

    QR CODE
    :::