跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳佳芸
Jia-Yun Wu
論文名稱: 二維矩陣係數驗證及半導體元件模擬
2D matrix coefficient verification and semiconductor device simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 矩陣係數驗證法二維三角形網格元件模擬
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文討論矩陣係數驗證法,來幫助半導體元件模擬之程式開發。在過去經常面臨程式上不收斂或者結果錯誤,且常常束手無策,很困難解決,因此矩陣係數驗證法可以一步一步驗證出聯立方程式的係數值,並且保證確保能抓到錯誤。為了增加二維分析的彈性,我們採用重心法的三角形網格,在第一個三角形網格後面驗證係數值,檢查理論值與模擬值是否一致,以達驗證目的。最後,再將此三角形網格應用於其他半導體元件,如電阻、PN二極體、BJT等,並模擬其特性曲線。


    In this thesis, we discuss the matrix coefficient verification method to help develop programs for semiconductor device simulation. In the past, we often faced program non-convergence or had wrong results. We feel helpless and it is difficult to solve. Therefore, the matrix coefficient verification method can verify the coefficient values of simultaneous equations step by step, and ensure that errors can be caught. In order to increase the flexibility of the two-dimensional analysis, we use the triangle grid module to verify the coefficient values in the first triangle grid and check whether the theoretical value and the simulated value are consistent to achieve the verification. Finally, the triangular grid is applied to other semiconductor devices, such as resistors, PN diodes, BJT, etc., and simulate their characteristic curves.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 簡介 1 第二章 二維電路模擬架構與偵錯 4 2.1電路模擬之基本架構 4 2.2 如何有效率偵錯程式 8 2.3 矩陣係數驗證之重要性 10 第三章 二維三角形重心法的係數驗證 13 3.1三角形重心法之等效電路 13 3.2矩陣係數驗證 16 3.3電腦差分近似法求係數之探討 32 3.4電阻與PN二極體之模擬與驗證 34 第四章 二維BJT半導體元件之應用 41 4.1二維BJT之結構分析 41 4.2 二維BJT網格模型之設計 43 4.3二維BJT與其特性曲線模擬 45 第五章 結論 48 參考資料 49

    [1] Y. M. Li, “Research on Development of Computer Simulation Methods for Semiconductor
    Devices and Nanostructures,” D. S. Thesis, Institute of Electronics, National Chiao Tung
    University, Taiwan, Republic of China, 2000.
    [2] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation
    in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
    [3] M. S. Li, “Rectangular Transform of Trapezoidal Mesh and Its Application to Cylindrical
    MOSFETs,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of
    China, 2011.
    [4] M. Bern, D. Eppstein, and J. Gilbert, “Provably good mesh generation,” J. Compute.
    System Sci., pp. 384–409, 1994
    [5] S. S. Kuo, “Computer applications of numerical methods” Additions-Wesley Pub.Co.
    1972.
    [6] D. M. Bressoud, “Appendix to A Radical Approcch to Real Analysis,” 2nd edition,2006
    [7] Robert L. Boylestad, Louis Nashelsky, “Electronic Devices and Circuit Theory,”Chapter
    2, Prentice Hall, 9 edition, 2005
    [8] H. J. Kai,“ Finding the internal vector fromthe plane equation in obtuse triangle element
    for 2D semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central
    University, Taiwan, Republic of China, pp. 7-10, 2016.
    [9] W. T. Shen” Finding internal vector from the edge vector in obtuse triangle element for 2D
    semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central
    University, Taiwan, Republic of China, pp. 5-8, 2016.
    [10] D. A. Neamen, Semiconductor Physics and Devices, 3rd ed. McGraw-Hill Companies Inc.,
    New York, 2003.

    QR CODE
    :::